Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/92608
Titel: Autonomous traffic at intersections : an optimization-based analysis of possible time, energy, and CO 2 savings
Autor(en): Le, Do Duc
Merkert, Maximilian
Sorgatz, Stephan
Hahn, Mirko
Sager, SebastianIn der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2022
Art: Artikel
Sprache: Englisch
URN: urn:nbn:de:gbv:ma9:1-1981185920-945603
Schlagwörter: Autonomous driving
Cooperative systems
Energy-efficient mobility
Microscopic traffic modeling
Mixed-integer programming
Zusammenfassung: In the field of autonomous driving, traffic-light-controlled intersections are of special interest. We analyze how much an optimized coordination of vehicles and infrastructure can contribute to efficient transit through these bottlenecks, depending on traffic density and certain regulations of traffic lights. To this end, we develop a mixed-integer linear programming model to describe the interaction between traffic lights and discretized traffic flow. It is based on a microscopic traffic model with centrally controlled autonomous vehicles. We aim to determine a globally optimal traffic flow for given scenarios on a simple, but extensible, urban road network. The resulting models are very challenging to solve, in particular when involving additional realistic traffic-light regulations such as minimum red and green times. While solving times exceed real-time requirements, our model allows an estimation of the maximum performance gains due to improved communication and serves as a benchmark for heuristic and decentralized approaches.
URI: https://opendata.uni-halle.de//handle/1981185920/94560
http://dx.doi.org/10.25673/92608
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Sponsor/Geldgeber: Projekt DEAL 2021
Journal Titel: Networks
Verlag: Wiley
Verlagsort: New York, NY
Band: 79
Heft: 3
Originalveröffentlichung: 10.1002/net.22078
Seitenanfang: 338
Seitenende: 363
Enthalten in den Sammlungen:Fakultät für Mathematik (OA)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Le et al._Autonomous traffic_2022.pdfZweitveröffentlichung1.01 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen