Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/92608
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLe, Do Duc-
dc.contributor.authorMerkert, Maximilian-
dc.contributor.authorSorgatz, Stephan-
dc.contributor.authorHahn, Mirko-
dc.contributor.authorSager, Sebastian-
dc.date.accessioned2022-10-21T06:00:32Z-
dc.date.available2022-10-21T06:00:32Z-
dc.date.issued2022-
dc.date.submitted2022-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/94560-
dc.identifier.urihttp://dx.doi.org/10.25673/92608-
dc.description.abstractIn the field of autonomous driving, traffic-light-controlled intersections are of special interest. We analyze how much an optimized coordination of vehicles and infrastructure can contribute to efficient transit through these bottlenecks, depending on traffic density and certain regulations of traffic lights. To this end, we develop a mixed-integer linear programming model to describe the interaction between traffic lights and discretized traffic flow. It is based on a microscopic traffic model with centrally controlled autonomous vehicles. We aim to determine a globally optimal traffic flow for given scenarios on a simple, but extensible, urban road network. The resulting models are very challenging to solve, in particular when involving additional realistic traffic-light regulations such as minimum red and green times. While solving times exceed real-time requirements, our model allows an estimation of the maximum performance gains due to improved communication and serves as a benchmark for heuristic and decentralized approaches.eng
dc.description.sponsorshipProjekt DEAL 2021-
dc.language.isoeng-
dc.relation.ispartof10.1002/(ISSN)1097-0037-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectAutonomous drivingeng
dc.subjectCooperative systemseng
dc.subjectEnergy-efficient mobilityeng
dc.subjectMicroscopic traffic modelingeng
dc.subjectMixed-integer programmingeng
dc.subject.ddc510.72-
dc.titleAutonomous traffic at intersections : an optimization-based analysis of possible time, energy, and CO 2 savingseng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-945603-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleNetworks-
local.bibliographicCitation.volume79-
local.bibliographicCitation.issue3-
local.bibliographicCitation.pagestart338-
local.bibliographicCitation.pageend363-
local.bibliographicCitation.publishernameWiley-
local.bibliographicCitation.publisherplaceNew York, NY-
local.bibliographicCitation.doi10.1002/net.22078-
local.openaccesstrue-
dc.identifier.ppn1774339870-
local.bibliographicCitation.year2022-
cbs.sru.importDate2022-10-21T05:56:12Z-
local.bibliographicCitationEnthalten in Networks - New York, NY : Wiley, 1971-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Mathematik (OA)

Files in This Item:
File Description SizeFormat 
Le et al._Autonomous traffic_2022.pdfZweitveröffentlichung1.01 MBAdobe PDFThumbnail
View/Open