Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/1962
Titel: A model of enterprise-level crop yields under climate change - proof of concept, general computational strategy and partial implementation for the case of grain production in Saxony-Anhalt, Germany
Autor(en): Angelova, Denitsa
Gutachter: Becker, Claudia
Körperschaft: Martin-Luther-Universität Halle-Wittenberg
Erscheinungsdatum: 2017
Umfang: 1 Online-Ressource (130 Seiten)
Typ: Hochschulschrift
Art: Dissertation
Tag der Verteidigung: 2017-01-23
Sprache: Englisch
Herausgeber: Universitäts- und Landesbibliothek Sachsen-Anhalt
URN: urn:nbn:de:gbv:3:4-19667
Zusammenfassung: In dieser Arbeit wird die Notwendigkeit eines neuen Ernte-Ertrags-Modells auf der Ebene von Unternehmen, welches die Folgewirkungen des Klimawandels abschätzt, hergeleitet. Das in der Arbeit vorgestellte Modell zur Prognose der landwirtschaftlichen Erträge auf Unternehmensbasis kombiniert ökomische und agronomische Vorstellungen über die Produktion von landwirtschaftlichen Kulturen. Eine generelle Strategie zur praktischen Umsetzung des Modells wird präsentiert. Im Rahmen dieser Strategie wird eine neue geometrische Interpretation des Koeffizienten der Risikoaversion eingeführt, die dessen Identifikation erleichtert. Auch ein neuer Indikator zur Aufdeckung von Naturzuständen wird als methodischer Beitrag vorgeschlagen. Auf der empirischen Seite stellt die Arbeit die Schätzung einer zustandsabhängigen Produktionsfunktion für den Getreidesektor in Sachsen-Anhalt (Deutschland) vor, die basierend auf simulierten Daten die Hypothese von einer Output-Cubical-Technologie abgelehnt.
This thesis establishes the need for a novel enterprise-level crop yield model under climate change. A model for the approximation of enterprise-level crop yields under climate change is proposed, which integrates both economic and agronomic notions of crop production. A general computational strategy for the proposed model is provided. The strategy introduces a novel geometrical interpretation of the coefficient of risk-aversion, which is intrinsic to the farmer, as well as an approach to infer this coefficient of risk-aversion from farm-level accounting data. A new indicator to detect the nature states is also proposed as a methodological contribution based on the previous work by the author. On the empirical side, the thesis offers an estimation of a state-contingent production function for the crop-producing sector in the Federal State of Saxony-Anhalt, Germany. Based on simulated data the estimation rejects the hypothesis of an output cubical technology.
URI: https://opendata.uni-halle.de//handle/1981185920/8733
http://dx.doi.org/10.25673/1962
Open-Access: Open-Access-Publikation
Nutzungslizenz: In CopyrightIn Copyright
Enthalten in den Sammlungen:Wirtschaft

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Angelova Thesis.pdf2.16 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen