Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/1962
Title: | A model of enterprise-level crop yields under climate change - proof of concept, general computational strategy and partial implementation for the case of grain production in Saxony-Anhalt, Germany |
Author(s): | Angelova, Denitsa |
Referee(s): | Becker, Claudia |
Granting Institution: | Martin-Luther-Universität Halle-Wittenberg |
Issue Date: | 2017 |
Extent: | 1 Online-Ressource (130 Seiten) |
Type: | Hochschulschrift |
Type: | PhDThesis |
Exam Date: | 2017-01-23 |
Language: | English |
Publisher: | Universitäts- und Landesbibliothek Sachsen-Anhalt |
URN: | urn:nbn:de:gbv:3:4-19667 |
Abstract: | In dieser Arbeit wird die Notwendigkeit eines neuen Ernte-Ertrags-Modells auf der Ebene von Unternehmen, welches die Folgewirkungen des Klimawandels abschätzt, hergeleitet. Das in der Arbeit vorgestellte Modell zur Prognose der landwirtschaftlichen Erträge auf Unternehmensbasis kombiniert ökomische und agronomische Vorstellungen über die Produktion von landwirtschaftlichen Kulturen. Eine generelle Strategie zur praktischen Umsetzung des Modells wird präsentiert. Im Rahmen dieser Strategie wird eine neue geometrische Interpretation des Koeffizienten der Risikoaversion eingeführt, die dessen Identifikation erleichtert. Auch ein neuer Indikator zur Aufdeckung von Naturzuständen wird als methodischer Beitrag vorgeschlagen. Auf der empirischen Seite stellt die Arbeit die Schätzung einer zustandsabhängigen Produktionsfunktion für den Getreidesektor in Sachsen-Anhalt (Deutschland) vor, die basierend auf simulierten Daten die Hypothese von einer Output-Cubical-Technologie abgelehnt. This thesis establishes the need for a novel enterprise-level crop yield model under climate change. A model for the approximation of enterprise-level crop yields under climate change is proposed, which integrates both economic and agronomic notions of crop production. A general computational strategy for the proposed model is provided. The strategy introduces a novel geometrical interpretation of the coefficient of risk-aversion, which is intrinsic to the farmer, as well as an approach to infer this coefficient of risk-aversion from farm-level accounting data. A new indicator to detect the nature states is also proposed as a methodological contribution based on the previous work by the author. On the empirical side, the thesis offers an estimation of a state-contingent production function for the crop-producing sector in the Federal State of Saxony-Anhalt, Germany. Based on simulated data the estimation rejects the hypothesis of an output cubical technology. |
URI: | https://opendata.uni-halle.de//handle/1981185920/8733 http://dx.doi.org/10.25673/1962 |
Open Access: | Open access publication |
License: | In Copyright |
Appears in Collections: | Wirtschaft |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Angelova Thesis.pdf | 2.16 MB | Adobe PDF | View/Open |