Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/71695
Titel: On local optimality of vertex type designs in generalized linear models
Autor(en): Idais, Osama
Erscheinungsdatum: 2021
Art: Artikel
Sprache: Englisch
URN: urn:nbn:de:gbv:ma9:1-1981185920-736470
Schlagwörter: Generalized linear model
Approximate design
General equivalence theorem
Intercept term
Locally optimal design
Zusammenfassung: Locally optimal designs are derived for generalized linear modelswith first order linear predictors. We consider models including a single factor, two factors and multiple factors. Mainly, the experimental region is assumed to be a unit cube. In particular, models without intercept are considered on arbitrary experimental regions. Analytic solutions for optimal designs are developed under the D- and A-criteria, and more generally, for Kiefer’s k -criteria. The focus is on the vertex type designs. That is, the designs are only supported by the vertices of the respective experimental regions. By the equivalence theorem, necessary and sufficient conditions are developed for the local optimality of these designs. The derived results are applied to gamma and Poisson models.
URI: https://opendata.uni-halle.de//handle/1981185920/73647
http://dx.doi.org/10.25673/71695
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Sponsor/Geldgeber: Projekt DEAL 2020
Journal Titel: Statistical papers
Verlag: Springer
Verlagsort: Berlin
Band: 62
Originalveröffentlichung: 10.1007/s00362-020-01158-4
Seitenanfang: 1871
Seitenende: 1898
Enthalten in den Sammlungen:Fakultät für Mathematik (OA)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Idais_On local optimality_2021.pdfZweitveröffentlichung572.57 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen