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Abstract
Locally optimal designs are derived for generalized linearmodelswith first order linear
predictors. We consider models including a single factor, two factors and multiple
factors. Mainly, the experimental region is assumed to be a unit cube. In particular,
models without intercept are considered on arbitrary experimental regions. Analytic
solutions for optimal designs are developed under the D- and A-criteria, and more
generally, for Kiefer’s �k-criteria. The focus is on the vertex type designs. That is,
the designs are only supported by the vertices of the respective experimental regions.
By the equivalence theorem, necessary and sufficient conditions are developed for
the local optimality of these designs. The derived results are applied to gamma and
Poisson models.

Keywords Generalized linear model · Approximate design · General equivalence
theorem · Intercept term · Locally optimal design

1 Introduction

The generalized linear model (GLM) was developed by Nelder and Wedderburn
(1972). It is viewed as a generalization of the ordinary linear regression which allows
continuous or discrete observations from one-parameter exponential family distribu-
tions to be combined with explanatory variables (factors) via proper link functions.
Generalized linear models include several types such as Poisson, gamma, logistic
models among others. Therefore, wide applications can be addressed by GLMs such
as social and educational sciences, clinical trials, insurance, industry (Walker and
Duncan 1967; Myers and Montgomery 1997; Fox 2015; Goldburd et al. 2016).
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While deriving optimal designs is obtained by minimizing the variance-covariance
matrix there is no loss of generality to concentrate on maximizing the Fisher informa-
tion matrix. For generalized linear models the Fisher information matrix depends on
the model parameters. Therefore, the optimal design cannot be found without a prior
knowledge of the parameters. One approach is the so-called local optimality, which
was proposed by Chernoff (1953). This approach aims at deriving an optimal design
at a given parameter value (best guess).

As in many research works the results on optimal designs in particular, on a con-
tinuous experimental region are influenced by the type of models used. For example,
Ford et al. (1992) used single-factor GLMs.Moreover, Gaffke et al. (2019) and Russell
et al. (2009) used the gamma and the Poisson models, respectively, while the logistic
model was employed by Yang et al. (2011) and Atkinson and Haines (1996).

In this paper we focus on the problem of finding locally optimal designs for a class
of generalized linear models, which is motivated by the work of Yang and Stufken
(2009) and Tong et al. (2014), who provided analytic results for a general setup of
the GLM with binary factors. Here, we are also interested in deriving locally optimal
designs for a general setup of generalized linear models on continuous and discrete
experimental regions. Schmidt and Schwabe (2017) showed that the support points
of the optimal designs for GLMs on an experimental region given by a polytope are
located at the edges of the experimental region. In particular, in Gaffke et al. (2019)
we proved that the optimal designs for gamma models are supported by the vertices
of the experimental region (polytope). In this paper, we will restrict our attention to
the vertices of the experimental region by which optimal designs can be supported
for the corresponding generalized linear models. Throughout the sequel, we confine
ourselves to the general equivalence theorem to establish a necessary and sufficient
condition for a design to be locally optimal.

The remainder of the paper is organized as follows. In Sect. 2 we introduce the
generalized linear model and optimality of designs. Approaches to determine the
optimal weights for some particular designs under D-, A- and Kiefer �k-criteria are
characterized in Sect. 3. Then optimal designs are derived under the single-factor and
the two-factor models in Sects. 4 and 5, respectively. First order models of multiple
factors are presented in Sect. 6, and optimal designs are derived for such models with
and without intercept. Applications of the results are discussed under gamma and
Poisson model in Sect. 7.

2 Preliminary

In this section, we introduce the generalized linear model and give a characterization
of optimal designs. Let the univariate observation (response) Y belongs to a one-
parameter exponential family distribution in the canonical form

p(y; θ) = exp
(
yθ − b(θ) + c(y)

)
, (2.1)

where b(·) and c(·) are known functions while θ is a canonical parameter. In the
generalized linear model each response Y of a statistical unit is observed at a certain
value of a covariate x = (x1, . . . , xν)

T that belongs to an experimental region X ⊆
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R
ν, ν ≥ 1. Here, θ := θ(x,β) varies with the value of x ∈ X at a fixed value of

the vector of model parameters β ∈ R
p. The expected mean is given by E(Y ) =

μ(x,β) = b′(θ)with the variance function V
(
μ(x,β)

) = b′′(θ) [see McCullagh and
Nelder (1989, Sect. 2.2.2)]. Let f (x) : X → R

p be a vector of continuous regression
functions f1(x), . . . , f p(x) which are assumed to be linearly independent. Denote
the linear predictor by η = f T (x)β. In the generalized linear model it is assumed
that η = g

(
μ(x,β)

)
, where g is a link function and assumed to be one-to-one and

differentiable. We can define the intensity function at a point x ∈ X as

u(x,β) = V−1(μ(x,β)
) (dμ(x,β)

dη

)2
(2.2)

where dμ(x,β)/dη = 1/g′(μ(x,β)). Obviously, u(x,β) is positive for all x ∈ X
and may be regarded as a weight for the corresponding unit at the point x (Atkinson
and Woods 2015). The Fisher information matrix at x ∈ X [see Fedorov and Leonov
(2013, Sect. 1.3.2)] is given by

M(x,β) = u(x,β) f (x) f T (x). (2.3)

An informationmatrix of the form (2.3) is appropriate for other nonlinear models, e.g.,
model with survival times observations employing the proportional hazards (Schmidt
and Schwabe 2017). Moreover, under homoscedastic regression models the intensity
function is constantly equal to 1 whereas, under heteroscedastic regression models we
get intensity that is equal to 1/var(Y ), which depends on x only and thus we have
information matrix of the form M(x) = u(x) f (x) f T (x) that does not depend on
the model parameters. The latter case was discussed in Graßhoff et al. (2007) and in
the book by Fedorov and Leonov (2013, p.13).

Throughout the presentworkwewill deal with the approximate (continuous) design
theory. An approximate design ξ can be defined as a probability measure with finite
support on the experimental region X ,

ξ =
(
x1 x2 . . . xr
ω1 ω2 . . . ωr

)
, (2.4)

where r ∈ N, x1, x2, . . . , xr ∈ X are pairwise distinct points andω1, ω2, . . . , ωr > 0
with

∑r
i=1 ωi = 1. The set supp(ξ) = {x1, x2, . . . , xr } is called the support of ξ and

ω1, . . . , ωr are called the weights of ξ [see Silvey (1980, p.15)]. The information
matrix of a design ξ from (2.4) at a parameter point β is defined by

M(ξ,β) =
∫

X
M(x,β) ξ(dx) =

r∑
i=1

ωiM(xi ,β). (2.5)

One might recognize M(ξ,β) as a convex combination of all information matrices
for all support points of ξ . Another representation of the information matrix (2.5) can
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1874 O. Idais

be utilized based on the r × p design matrix F = [ f (x1), . . . , f (xr )]T and the r × r
weight matrix V = diag(ωi u(xi ,β))ri=1 and hence we can write

M(ξ,β) = FT V F.

Remark A particular type of designs appears frequently when the support size equals
the dimension of f , i.e., r = p. In such a case the design is minimally supported and
it is often called a minimal-support or a saturated design.

This paper focuses on optimal designs within the family of Kiefer’s�k-criteria (Kiefer
1975). These criteria aim at minimizing the k-norm of the eigenvalues of the variance-
covariance matrix and include the most common criteria for D-, A- and E- optimality.
Denote by λi (ξ,β) (1 ≤ i ≤ p) the eigenvalues of a nonsingular information matrix
M(ξ,β). Denote by “det” and “tr” the determinant and the trace of a matrix, respec-
tively. The Kiefer’s �k-criteria are defined by

�k
(
M(ξ,β)

) =
( 1

p
tr
(
M−k(ξ,β)

)) 1
k =

( 1

p

p∑
i=1

λ−k
i (ξ,β)

) 1
k
, 0 < k < ∞,

�0
(
M(ξ,β)

) = lim
k→0+ �k

(
M(ξ,β)

) =
(
det(M−1(ξ,β))

) 1
p
,

�∞
(
M(ξ,β)

) = lim
k→∞ �k

(
M(ξ,β)

) = max
1≤i≤p

(
λ−1
i (ξ,β)

)
.

Note that�0
(
M(ξ,β)

)
,�1

(
M(ξ,β)

)
and�∞

(
M(ξ,β)

)
are theD-,A- andE-criteria,

respectively. Since M(ξ,β) depends on the values of the parameters, a best guess of
β is adopted here and locally D-optimal designs are constructed (Chernoff 1953).
A locally �k-optimal design ξ∗ (at β) minimizes the function �k

(
M(ξ,β)

)
over all

designs ξ whose information matrix M(ξ,β) is nonsingular. For 0 ≤ k < ∞ the strict
convexity of�k

(
M(ξ,β)

)
implies that the information matrix of a locally�k-optimal

design (at β) is unique. That is, if ξ∗ and ξ∗∗ are two locally�k-optimal designs (at β)
then M(ξ∗,β) = M(ξ∗∗,β) (Kiefer 1975). In particular, D-optimal designs are con-
structed tominimize the determinant of the variance-covariancematrix of the estimates
or equivalently tomaximize the determinant of the informationmatrix. TheD-criterion
is typically defined by the convex function �D(M(ξ,β)) = − log det

(
M(ξ,β)

)
. A-

optimal designs are constructed tominimize the trace of the variance-covariancematrix
of the estimates, i.e., tominimize the average variance of the estimates. TheA-criterion
is typically defined by �A

(
M(ξ,β)

) = tr
(
M−1(ξ,β)

)
. Moreover, E-optimal designs

maximize the smallest eigenvalue of M(ξ,β).
In order to verify the local optimality of a design the general equivalence theorem

is commonly employed [see Atkinson et al. (2007, p.137)]. It provides necessary and
sufficient conditions for a design to be optimal and thus the optimality of a suggested
design can be easily verified or disproved. The design ξ∗ is �k-optimal if and only if

u(x,β) f T (x)M−k−1(ξ∗,β) f (x) ≤ tr(M−k(ξ∗,β)) for all x ∈ X , (0 ≤ k < ∞).

(2.6)
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Furthermore, if the design ξ∗ is �k-optimal then inequality (2.6) becomes equality at
its support.

Remark The left hand side of condition (2.6) of the general equivalence theorem is
called the sensitivity function.

3 Determination of locally optimal weights

In this section we provide the optimal weights of particular types of designs that will
appear throughout the paper with respect to Kiefer’s �k-criteria. Particular emphasis
will be on the A-criterion (k = 1) and the D-criterion (k = 0). This work mostly deals
with saturated designs (i.e., r = p). Let the support points be given by x∗

1, . . . , x
∗
p

such that f (x∗
1), . . . , f (x∗

p) are linearly independent. For the A-criterion (k = 1) the
optimal weights are given according to Pukelsheim (1993, Sect. 8.8), which has been
modified in Gaffke et al. (2019). The design ξ∗ which achieves the minimum value of
tr
(
M−1(ξ,β)

)
over all designs ξ with supp(ξ) = {x∗

1, . . . , x
∗
p} is given by

ξ∗ =
(
x∗
1 . . . x∗

p
ω∗
1 . . . ω∗

p

)
, with ω∗

i = c−1
(cii
ui

)1/2
(1 ≤ i ≤ p) , c =

p∑
k=1

(ckk
uk

)1/2
,

(3.1)
where ui = u(x∗

i ,β) (1 ≤ i ≤ p) and cii (1 ≤ i ≤ p) are the diagonal entries of the

matrix C = (F−1)T F−1 and F = [
f (x∗

1), . . . , f (x∗
p)

]T .
For theD-criterion (k = 0) the optimalweights are given byω∗

i = 1/p (1 ≤ i ≤ p),
see Lemma 5.1.3 of Silvey (1980). This means that the locally D-optimal saturated
design assigns equal weights to the support points. On the other hand, there is no
unified formulas for the optimal weights of a non-saturated design specifically, with
respect to D-criterion. However, for p = 3 the following lemma provides the optimal
weights of a design with four support points ξ∗ = {(x∗

i , ω
∗
i ), i = 1, 2, 3, 4} under

certain conditions.

Lemma 3.1 Let p = 3. Let the design points x∗
1, x∗

2, x∗
3, x∗

4 ∈ X be given such that
any three of the four vectors f (x∗

1), f (x
∗
2), f (x

∗
3), f (x

∗
4) are linearly independent.

Denote

d1 = det
[
f (x∗

2), f (x∗
3), f (x∗

4)
]
, d2 = det

[
f (x∗

1), f (x∗
3), f (x∗

4)
]
,

d3 = det
[
f (x∗

1), f (x∗
2), f (x∗

4)
]
, d4 = det

[
f (x∗

1), f (x∗
2), f (x∗

3)
]

such that di 
= 0, i = 1, 2, 3, 4. For a given parameter point β denote ui =
u(x∗

i ,β), i = 1, 2, 3, 4. Assume that u2 = u3 and d22 = d23 and let

ω∗
1 = 3

8
+ 1

4

(
1 + d21

d24

u1
u4

− 4
d22
d24

u1
u2

)−1
,

ω∗
2 = ω∗

3 = 1

2

(
4 − d24

d22

u2
u1

− d21
d22

u2
u4

)−1
,
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ω∗
4 = 3

8
+ 1

4

(
1 + d24

d21

u4
u1

− 4
d22
d21

u4
u2

)−1
.

Assume that ω∗
i > 0, i = 1, 2, 3, 4. Then the design ξ∗ which achieves the minimum

value of − log det
(
M(ξ,β)

)
over all designs ξ with supp(ξ) = {x∗

1, x
∗
2, x

∗
3, x

∗
4} is

given by ξ∗ = {(x∗
i , ω

∗
i ), i = 1, 2, 3, 4}.

Proof Let f 	 = f (x∗
	) (1 ≤ 	 ≤ 4). The 4 × 3 design matrix is given by

F = [
f 1, f 2, f 3, f 4

]T . Denote V = diag
(
ω	u	

)4
	=1. Then M(ξ,β) = FT V F

and by the Cauchy–Binet formula the determinant of M(ξ,β) is given by the function
ϕ(ω1, ω2, ω3, ω4) where

ϕ(ω1, ω2, ω3, ω4) =
∑

1≤i< j<k≤4
h∈{1,2,3,4}\{i, j,k}

d2hui u j uk ωiω jωk . (3.2)

By assumptions u2 = u3, d22 = d23 the function ϕ(ω1, ω2, ω3, ω4) is invariant w.r.t.
permuting ω2 and ω3, i.e., ϕ(ω1, ω2, ω3, ω4) = ϕ(ω1, ω3, ω2, ω4) and thus minimiz-
ing (3.2) has the same solutions for ω2 and ω3. Thus we can write ω4 = 1−ω1 −2ω2
and (3.2) reduces to

ϕ(ω1, ω2) = α1ω
3
2 + α2ω

2
2 + α3ω

2
1ω2 + α4ω

2
2ω1 + α5ω1ω2,

where α1 = −2 α2 = −2 d24 u
2
2 u4, α3 = −α5 = −4 d22 u1 u2 u4, α4 =

u22
(
d21 u1 − d24 u4

) − 4 d22 u1 u2 u4. Thus we obtain the system of two equations
∂ϕ/∂ω1 = 0, ∂ϕ/∂ω2 = 0. Straightforward computations show that the solution of
the above system is the optimal weights ω∗

	 (1 ≤ 	 ≤ 4) presented by the lemma.
Hence, these optimal weights minimizing ϕ(ω1, ω2). ��

Moreover, the choice of optimal weights of the saturated design under Kiefer �k-
criteria was given in Pukelsheim et al. (1991). It was stated in Schmidt (2019), Sect. 5,
that the method of Pukelsheim et al. (1991) provides a system of equations that must
be solved numerically. In the following, explicit optimal weights of the �k-optimal
saturated design are derived for a GLM without intercept specifically, under the first
order model f (x) = (x1, . . . , xν)

T and a parameter vector β = (β1, . . . , βν)
T . The

choice of locally�k-optimalweightswhichyields theminimumvalue of�k
(
M(ξ,β)

)
over all saturated designs with the same support is given by the following lemma.

Lemma 3.2 Consider a GLM without intercept with f (x) = (x1, . . . , xν)
T on an

experimental region X . Denote by ei for all (1 ≤ i ≤ ν) the ν-dimensional unit
vectors. Let x∗

i = ai ei , ai > 0 for all (1 ≤ i ≤ ν) be design points in X . For a
given parameter point β = (β1, . . . , βν)

T let ui = u(x∗
i ,β) for all (1 ≤ i ≤ ν).

Let a vector a = (a1, . . . , aν)
T be given with positive components. Then the design

ξ∗
a which achieves the minimum value of �k

(
M(ξa,β)

)
over all designs ξa with

supp(ξa) = {x∗
1, . . . , x

∗
ν} assigns weights
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ω∗
i = (a2i ui )

−k
k+1

∑ν
j=1(a

2
j u j )

−k
k+1

(1 ≤ i ≤ ν)

to the corresponding design points x∗
1, . . . , x

∗
ν . Hence,

for D-optimality (k = 0), ω∗
i = 1/ν (1 ≤ i ≤ ν).

for A-optimality (k = 1), ω∗
i = (a2i ui )

−1/2
∑ν

j=1(a
2
j u j )

−1/2 (1 ≤ i ≤ ν).

for E-optimality (k → ∞), ω∗
i = (a2i ui )

−1
∑ν

j=1(a
2
j u j )

−1 (1 ≤ i ≤ ν).

Proof Define the ν × ν design matrix F = diag(ai )νi=1 with the ν × ν weight matrix
V = diag(uiωi )

ν
i=1. Then we have M

(
ξa,β

) = FT V F = diag(a2i uiωi )
ν
i=1 and

M−k
(
ξa,β

) = diag
(
(a2i uiωi )

−k
)ν

i=1 with tr
(
M−k(ξa,β)

) = ∑ν
i=1(a

2
i uiωi )

−k . Thus

�k
(
M(ξa,β)

) =
(
1

ν

ν∑
i=1

(a2i uiωi )
−k

) 1
k

, (0 < k < ∞). (3.3)

Now we aim at minimizing �k
(
M(ξa,β)

)
such that ωi > 0 and

∑ν
i=1 ωi = 1. We

write ων = 1 − ∑ν−1
i=1 ωi then (3.3) becomes

�k
(
M(ξa,β)

) = 1

ν1/k

(
(a2νuν)

−k(1 −
ν−1∑
i=1

ωi )
−k +

ν−1∑
i=1

(a2i uiωi )
−k

) 1
k

.

It is straightforward to see that the equation
∂�k

(
M(ξa,β)

)
∂ωi

= 0 is equivalent to

(a2i ui )
kωk+1

i − (a2νuν)
k

(
1 −

ν−1∑
i=1

ωi

)k+1

= 0

which gives ωi =
(
a2νuν/(a2i ui )

) k
k+1

ων (1 ≤ i ≤ ν − 1), thus ωi (a2i ui )
k

k+1 =
ων (a2νuν)

k
k+1 (1 ≤ i ≤ ν − 1). This means ωi (a2i ui )

k
k+1 (1 ≤ i ≤ ν) are all equal,

i.e.,ωi (a2i ui )
k

k+1 = c (1 ≤ i ≤ ν), where c > 0. It implies thatωi = c (a2i ui )
−k
k+1 (1 ≤

i ≤ ν). Due to
∑ν

i=1 ωi = 1 we get
∑ν

i=1 c (a2i ui )
−k
k+1 = c

∑ν
i=1(a

2
i ui )

−k
k+1 = 1, and

thus c = (∑ν
i=1(a

2
i ui )

−k
k+1

)−1. Sowefinally obtainωi = (a2i ui )
−k
k+1 /

(∑ν
j=1(a

2
j u j )

−k
k+1

)
for all (1 ≤ i ≤ ν) which are the optimal weights given by the lemma. ��
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4 Single-factor model

In this section we deal with the simplest case under a model with a single factor

η(x,β) = f T (x)β = β0 + β1x where x ∈ X .

Let the experimental region is taken to be the continues unit interval X = [0, 1]. In
the following we introduce, for a fixed β = (β0, β1)

T , the function

h(x) = 1

u(x,β)
, x ∈ [0, 1],

which will be utilized for the characterization of the optimal designs. Consider the
following conditions:

(i) u(x,β) is positive and twice continuously differentiable on [0, 1].
(ii) u(x,β) is strictly increasing on [0, 1].
(iii) h′′(x) is an injective (one-to-one) function on [0, 1].
Recently, Lemma 1 in Konstantinou et al. (2014) showed that under the above con-
ditions (i)-(i i i) a locally D-optimal design on [0, 1] is only supported by two points
a and b where 0 ≤ a < b ≤ 1. In what follows an analogous result is presented for
locally optimal designs under various optimality criteria.

Lemma 4.1 Consider a GLM with f (x) = (1, x)T and the experimental region
X = [0, 1]. Let a parameter point β = (β0, β)T be given. Let conditions (i)-(i i i )
be satisfied. Denote by A a positive definite matrix and let c be constant. Then if the
condition of the general equivalence theorem is of the form

u(x,β) f T (x)A f (x) ≤ c

then the support points of a locally optimal design ξ∗ is concentrated on exactly two
points a and b where 0 ≤ a < b ≤ 1.

Proof Let A = [ai j ]i, j=1,2. Then let p(x) = f T (x)A f (x) = a22x2 + 2a12x + a11
which is a polynomial in x of degree 2where x ∈ X . Hence, by the general equivalence
theorem ξ∗ is locally optimal (at β) if and only if

p(x) ≤ c h(x) for all x ∈ [0, 1].

The above inequality is similar to that obtained in the proof of Lemma 1 in Konstanti-
nou et al. (2014) and thus the rest of our proof is analogous to that. ��
Accordingly, for D-optimality we have c = 2 and A = M−1(ξ∗,β). For A-optimality
we have c = tr(M−1(ξ∗,β)) = (√

(a2 + 1)/ub + √
(b2 + 1)/ua

)
/(b − a)2 where

ua = u(a,β) and ub = u(b,β) with A = M−2(ξ∗,β). In general, under Kiefer’s
�k-criteria we denote c = tr(M−k(ξ∗,β)) and A = M−k−1(ξ∗,β). Moreover, the
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Generalized D-criterion and L-criterion can be applied (Atkinson and Woods 2015,
Chapter 10).

As a consequence of Lemma 4.1, we next provide sufficient conditions for a design
supported by the boundary points 0 and 1 to be locally D- or A-optimal on X = [0, 1]
at a given β. Let q(x) = 1/u(x,β) and denote q0 = q

1
2 (0) and q1 = q

1
2 (1).

Theorem 4.1 Consider a GLM with f (x) = (
1, x

)T
and the experimental region

X = [0, 1]. Let a parameter point β = (β0, β)T be given. Let q(x) be positive and
twice continuously differentiable. Then:

(i) The unique locally D-optimal design ξ∗ (at β) is the two-point design supported
by 0 and 1 with equal weights 1/2 if

q20 + q21 > q ′′(x)/2 for all x ∈ (0, 1). (4.1)

(ii) The unique locally A-optimal design ξ∗ (at β) is the two-point design supported
by 0 and 1 with weights

ω∗
0 =

√
2q0√

2q0 + q1
and ω∗

1 = q1√
2q0 + q1

if
q20 + q21 + √

2q0q1 > q ′′(x)/2 for all x ∈ (0, 1). (4.2)

Proof Part (i): Condition (2.6) of the general equivalence theorem for k = 0 implies
that ξ∗ is locally D-optimal if and only if

(1 − x)2q20 + x2q21 − q(x) ≤ 0 ∀x ∈ [0, 1]. (4.3)

Since the support points are {0, 1}, the l.h.s. of the above inequality equals zero at
the boundaries of [0, 1]. Then it is sufficient to show that the aforementioned l.h.s. is
convex on the interior (0, 1) and this convexity realizes under condition (4.1) asserted
in the theorem. Now to show that ξ∗ is unique at β assume that ξ∗∗ is locally D-optimal
at β. Then M(ξ∗,β) = M(ξ∗∗,β) and therefore, the condition of the equivalence
theorem under ξ∗∗ is equivalent to (4.3) and this is an equation only at the support of
ξ∗, i.e., 0 and 1.

Part (i i): This case can be shown in analogy to Part (i) by employing condition (2.6)
of the general equivalence theorem for k = 1 with tr(M−1(ξ∗,β)) = (

√
2q0 + q1)2.

The optimal weights ω∗
0 and ω∗

1 are derived according to (3.1) in Sect. 3. ��

5 Two-factor model

In this section we consider a first order model of two factors

f (x) = (
1, x1, x2

)T where x = (x1, x2)
T ∈ X . (5.1)
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5.1 Continuous factors

Let the experimental region be given by the unit rectangle X = [0, 1]2. Denote the
vertices of X by x∗

1 = (0, 0)T , x∗
2 = (1, 0)T , x∗

3 = (0, 1)T and x∗
4 = (1, 1)T . In

the following we provide necessary and sufficient conditions for the designs that are
supported by the vertices x∗

1, x
∗
2, x

∗
3, x

∗
4 to be locally D- and A-optimal.

Theorem 5.1 Consider a GLM with f (x) = (
1, x1, x2

)T
and the experimental region

X = [0, 1]2. For a given parameter point β = (β0, β1, β2)
T let ui = u(x∗

i ,β) (1 ≤
i ≤ 4). Then:
(o) The locally D-optimal design ξ∗ (at β) is unique.

(1) ξ∗ =
(

x∗
1 x∗

2 x∗
3

1/3 1/3 1/3

)
if and only if

(1 − x1 − x2)
2u−1

1 + x21u
−1
2 + x22u

−1
3 ≤ u−1(x,β) ∀x ∈ [0, 1]2.

(2) ξ∗ =
(

x∗
1 x∗

2 x∗
4

1/3 1/3 1/3

)
if and only if

(1 − x1)
2u−1

1 + (x1 − x2)
2u−1

2 + x22u
−1
4 ≤ u−1(x,β) ∀x ∈ [0, 1]2.

(3) ξ∗ =
(

x∗
1 x∗

3 x∗
4

1/3 1/3 1/3

)
if and only if

(1 − x2)
2u−1

1 + (x2 − x1)
2u−1

3 + x21u
−1
4 ≤ u−1(x,β) ∀x ∈ [0, 1]2.

(4) ξ∗ =
(

x∗
2 x∗

3 x∗
4

1/3 1/3 1/3

)
if and only if

(1 − x2)
2u−1

2 + (1 − x1)
2u−1

3 + (x1 + x2 − 1)2u−1
4

≤ u−1(x,β) ∀x ∈ [0, 1]2.

(5) Otherwise, ξ∗ is supported by the four design points x∗
1, x

∗
2, x

∗
3, x

∗
4.

Proof The proof of cases (1) – (4) is demonstrated bymaking use of condition (2.6) for
k = 0 of the general equivalence theorem. For case (	) (1 ≤ 	 ≤ 4) denote the design
matrix F = [ f (x∗

i ), f (x∗
j ), f (x∗

k)]T and the weight matrix U = diag
(
ui , u j , uk

)
such that 1 ≤ i < j < k ≤ 4 and i, j, k 
= 4− 	+1. We will show that the condition
in each case (1)–(4) is equivalent to

(1, x1, x2)F−1U−1(FT )−1(1, x1, x2)
T ≤ u−1(x,β) ∀x = (x1, x2)

T ∈ [0, 1]2.
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To this end, for each case (1) – (4), we report the matrices F, F−1 and U

(1) : F =
⎛
⎝
1 0 0
1 1 0
1 0 1

⎞
⎠ , F−1 =

⎛
⎝

1 0 0
−1 1 0
−1 0 1

⎞
⎠ , U = diag

(
u1, u2, u3

)
.

(2) : F =
⎛
⎝
1 0 0
1 1 0
1 1 1

⎞
⎠ , F−1 =

⎛
⎝

1 0 0
−1 1 0
0 −1 1

⎞
⎠ , U = diag

(
u1, u2, u4

)
.

(3) : F =
⎛
⎝
1 0 0
1 0 1
1 1 1

⎞
⎠ , F−1 =

⎛
⎝

1 0 0
0 −1 1

−1 1 0

⎞
⎠ , U = diag

(
u1, u3, u4

)
.

(4) : F =
⎛
⎝
1 1 0
1 0 1
1 1 1

⎞
⎠ , F−1 =

⎛
⎝

1 1 −1
0 −1 1

−1 0 1

⎞
⎠ , U = diag

(
u2, u3, u4

)
.

It remains to show that the design ξ∗ is unique at β. Suppose that ξ∗ and ξ∗∗ are locally
D-optimal at β. Then by the strict convexity of the D-criterion we have M(ξ∗,β) =
M(ξ∗∗,β). Thus M(ξ∗,β) − M(ξ∗∗,β) = ∑4

i=1(ω
∗
i − ω∗∗

i )ui f (x∗
i ) f

T (x∗
i ) = 0.

The intensities ui (1 ≤ i ≤ 4) are positive and f (x∗
i ) f

T (x∗
i ) (1 ≤ i ≤ 4) are linearly

independent. It follows that ω∗
i − ω∗∗

i = 0 (1 ≤ i ≤ 4). ��

In analogy to Theorem 5.1 we introduce locally A-optimal designs in the next
theorem.

Theorem 5.2 Consider the assumptions and notations of Theorem 5.1. Denote qi =
u−1/2
i (1 ≤ i ≤ 4). Then:

(o) The locally A-optimal design ξ∗ (at β) is unique.

(1) ξ∗ =
(

x∗
1 x∗

2 x∗
3√

3q1/c q2/c q3/c

)
if and only if

(1 − x1 − x2)
2q21 + x21q

2
2 + x22q

2
3 − 2√

3
(1 − x1 − x2)

(
x1q2 + x2q3

)
q1

≤ u−1(x,β) ∀x ∈ [0, 1]2.

(2) ξ∗ =
(

x∗
1 x∗

2 x∗
4√

2q1/c
√
2q2/c q4/c

)
if and only if

(1 − x1)
2q21 + (x1 − x2)

2q22 + x22q
2
4 − (x1 − x2)

(
(1 − x1)q1 + √

2x2q4
)
q2

≤ u−1(x,β) ∀x ∈ [0, 1]2.
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(3) ξ∗ =
(

x∗
1 x∗

3 x∗
4√

2q1/c
√
2q3/c q4/c

)
if and only if

(1 − x2)
2q21 + (x2 − x1)

2q23 + x21q
2
4 − (x2 − x1)

(
(1 − x2)q1 + √

2x1q4
)
q3

≤ u−1(x,β) ∀x ∈ [0, 1]2.

(4) ξ∗ =
(

x∗
2 x∗

3 x∗
4√

2q2/c
√
2q3/c

√
3q4/c

)
if and only if

(1 − x2)
2q22 + (1 − x1)

2q23 + (x2 + x1 − 1)2q24 + (1 − x1)(1 − x2)q2q3

− 2

√
2

3
(x1 + x2 − 1)

(
(1 − x2)q2 − (1 − x1)q3

)
q4

≤ u−1(x,β) ∀x ∈ [0, 1]2.

For each case (1)–(4), the constant c appearing in the weights equals the sum of
the numerators of the three ratios.

(5) Otherwise, ξ∗ is supported by the four design points x∗
1, x

∗
2, x

∗
3, x

∗
4.

Proof We make use of condition (2.6) for k = 1 of the general equivalence theorem.
In analogy to the proof of Theorem 5.1 for case (	) (1 ≤ 	 ≤ 4) denote F =
[ f (x∗

i ), f (x∗
j ), f (x∗

k)]T , U = diag
(
ui , u j , uk

)
and � = diag(ω∗

i , ω
∗
j , ω

∗
k ) such that

1 ≤ i < j < k ≤ 4 and i, j, k 
= 4 − 	 + 1. Then we obtain C = (
F−1

)T F−1. An
elementary calculation shows that the weights given by (3.1) for an A-optimal design
coincide with the ω∗

i (1 ≤ i ≤ 3) as stated in the theorem. Now we show that the
design ξ∗ is locally A-optimal if and only if the corresponding condition holds. We
have

M(ξ∗,β) = FT V F = FT�UF,

tr
(
M−1(ξ∗,β)

) = tr
(
F−1U−1�−1(F−1)T

)

= c

((c11
u1

)1/2 +
(c22
u2

)1/2 +
(c33
u3

)1/2) = c2.

Since U−1/2�−1 = c diag
(
c−1/2
11 , c−1/2

22 , c−1/2
33

)
, we obtain

M−2(ξ∗,β) = F−1U−1�−1(F−1)T F−1U−1�−1(F−1)T

= c2 F−1U−1/2C∗U−1/2(F−1)T

whereC∗ = diag
(
c−1/2
11 , c−1/2

22 , c−1/2
33‘

)
C diag

(
c−1/2
11 , c−1/2

22 , c−1/2
33

)
. So, togetherwith

condition (2.6) of the general equivalence theorem for k = 1 the design ξ∗ is locally
A-optimal (at β) if and only if
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(1, x1, x2)F−1U−1/2C∗U−1/2(F−1)T (1, x1, x2)
T

≤ u−1(x,β) ∀ x ∈ [0, 1]2 (5.2)

Straightforward calculation shows that condition (5.2) is equivalent to the respective
condition in Case (	). ��

Remark Yang et al. (2011) developed a method to find locally optimal designs for
logistic models of multiple factors. It was assumed that one factor is defined on the
whole real line while the other factors belong to a compact region which seems in
conflict with the experimental region given in Theorem 5.1. Then a subclass of designs
was established by Loewner semi ordering of nonnegative definite matrices and so,
one could focus on this subclass to derive optimal designs. A similar strategy was used
in Gaffke et al. (2019) for gamma models on the experimental region [0, 1]ν, ν ≥ 1.
Nevertheless, it seems that this strategy may not work for a general setup of the
generalized linear model. However, consider a logistic model of two factors with
f (x) = (1, x1, x2)T and intensity function u(x,β) = exp(β0 + β1x1 + β2x2)/(1 +
exp(β0 + β1x1 + β2x2))2. According to Yang et al. (2011) the experimental region
is assumed to be X = [0, 1] × R, i.e., x2 ∈ (−∞,∞). From Yang et al. (2011),
Corollary 1, a locally D-optimal design is given by

ξ∗ =
(

(0, c∗−β0
β2

)T (0, −c∗−β0
β2

)T (1, c∗−β0−β1
β2

)T (1, −c∗−β0−β1
β2

)T

1/4 1/4 1/4 1/4

)

where c∗ is the maximizor of c2
(
exp(c)/(1+exp(c))2

)3. In general, ξ∗ is not covered
by Theorem 5.1. In contrast to that, for a particular parameter point β = (β0, β1, β2)

T

such that β1 = 0, β2 = −2β0 and β0 = c∗ the design ξ∗ is supported by the vertices
of [0, 1]2.

5.2 Discrete factors

Here, we assume two factors each at two levels, i.e., 0 and 1. The experimental region
is given by X̃ = {0, 1}2 which consists of the vertices of the unit rectangle [0, 1]2. So
we write X̃ = {x∗

1, x
∗
2, x

∗
3, x

∗
4}.

Corollary 5.1 Consider a GLMwith f (x) = (
1, x1, x2

)T
and the experimental region

X̃ = {0, 1}2. For a given parameter point β = (β0, β1, β2)
T let ui = u(x∗

i ,β) (1 ≤
i ≤ 4). Denote by u(1) ≤ u(2) ≤ u(3) ≤ u(4) the intensity values u1, u2, u3, u4
rearranged in ascending order. Then:

(i) The design ξ∗ is supported by the three design points whose intensity values are
given by u(2), u(3), u(4), with equal weights 1/3 if and only if

u−1
(2) + u−1

(3) + u−1
(4) ≤ u−1

(1).
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(ii) The design ξ∗ is supported by the four design points x∗
1, x

∗
2, x

∗
3, x

∗
4 with weights

ω∗
1, ω

∗
2, ω

∗
3, ω

∗
4 which are uniquely determined by the condition

ω∗
i > 0 (1 ≤ i ≤ 4),

4∑
i=1

ω∗
i = 1, and uiω

∗
i

( 1
3 − ω∗

i

)
(1 ≤ i ≤ 4) are equal

(5.3)
if and only if u−1

(2) + u−1
(3) + u−1

(4) > u−1
(1) .

Proof The proof is demonstrated byTheorem5.1. The condition of ξ∗ in part (i) comes
by the the corresponding inequality in cases (1)–(4) of Theorem 5.1 which arises at
the point that is not a support of the respective ξ∗. The equal values of the identity
uiω∗

i

( 1
3 − ω∗

i

)
for i = 1, 2, 3, 4 were proved in Gaffke et al. (2019). ��

Remark In part (i) of Corollary 5.1 the design points with highest intensities perform
as a support of a locally D-optimal design.

Theorem 5.3 Under the assumptions of Corollary 5.1 let the parameter point
β = (β0, β1, β2)

T be given with β1 = β2 = β which fulfills assumption (ii ) of Corol-
lary 5.1. Then the locally D-optimal design (at β) is supported by the four design
points x∗

1, x
∗
2, x

∗
3, x

∗
4 with positive weights

ω∗
1 = 3

8
+ 1

4

(
1 + u1

u4
− 4

u1
u2

)−1
,

ω∗
2 = ω∗

3 = 1

2

(
4 − u2

u1
− u2

u4

)−1
,

ω∗
4 = 3

8
+ 1

4

(
1 + u4

u1
− 4

u4
u2

)−1
.

Proof Since assumption (i i) of Corollary 5.1 is fulfilled by a point β the design is
supported by all points x∗

1, x
∗
2, x

∗
3, x

∗
4. Then the optimalweights are obtained according

to Lemma 3.1 where we have d2i = 1 (1 ≤ i ≤ 4) and u2 = u3. Hence, the results
follow. ��

Now we restrict to A-optimal designs on the set of vertices X̃ = {0, 1}2. It can
also be noted that the design points with highest intensities perform as a support of a
locally A-optimal design at a given parameter value.

Corollary 5.2 Consider the assumptions and notations of Corollary 5.1. Denote qi =
u−1/2
i (1 ≤ i ≤ 4). Then the unique locally A-optimal design ξ∗ is as follows.

(1) ξ∗ =
(

x∗
1 x∗

2 x∗
3√

3q1/c q2/c q3/c

)
if and only if

q21 + q22 + q23 + 2√
3
q1(q2 + q3) ≤ q24 .
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(2) ξ∗ =
(

x∗
1 x∗

2 x∗
4√

2q1/c
√
2q2/c q4/c

)
if and only if

q21 + q22 + q24 + q1q2 + √
2q2q4 ≤ q23 .

(3) ξ∗ =
(

x∗
1 x∗

3 x∗
4√

2q1/c
√
2q3/c q4/c

)
if and only if

q21 + q23 + q24 + q1q3 + √
2q3q4 ≤ q22 .

(4) ξ∗ =
(

x∗
2 x∗

3 x∗
4√

2q2/c
√
2q3/c

√
3q4/c

)
if and only if

q22 + q23 + q24 + q2q3 + 2

√
2

3
q4(q2 + q3) ≤ q21 .

For each case (i) – (iv), the constant c appearing in the weights equals the sum
of the numerators of the three ratios.

(5) Otherwise, ξ∗ is supported by the four design points x∗
1, x

∗
2, x

∗
3, x

∗
4.

As the optimal weights of the A-optimal designs depend on the model parameters
each condition provided in the theorem characterizes a subregion of the parameter
space where the corresponding designs with the same support are A-optimal.

6 Multiple regressionmodel

6.1 Model with intercept

Consider a first order model of multiple factors

f (x) = (
1, xT

)T where x = (x1, . . . , xν)
T ∈ X = [0, 1]ν . (6.1)

Here, we are interested in providing an extension of locally D- and A-optimal designs
with support (0, 0)T , (1, 0)T , (0, 1)T that are given in part (1) of Theorems 5.1 and
5.2.

Theorem 6.1 Consider model (6.1) with experimental region X = [0, 1]ν , where
ν ≥ 2. Define particular design points by

x∗
1 = (0, . . . , 0)T , x∗

2 = (1, . . . , 0)T , . . . , x∗
ν+1 = (0, . . . , 1)T .

For a given parameter pointβ = (β0, β1, . . . , βν)
T let ui = u(x∗

i ,β) (1 ≤ i ≤ ν+1).
Then the design ξ∗ which assigns equal weights 1/(ν + 1) to the design points x∗

i for
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all (1 ≤ i ≤ ν + 1) is locally D-optimal (at β) if and only if

u−1
1

⎛
⎝1 −

ν∑
j=1

x j

⎞
⎠

2

+
ν∑

i=1

u−1
i+1x

2
i ≤ u−1(x,β) for all x ∈ [

0, 1
]ν

. (6.2)

Proof Define the (ν +1)× (ν +1) design matrix F = [
f (x∗

1), . . . , f (x∗
ν+1)

]T , then

M(ξ∗,β) = 1

ν + 1
FTUF, where U = diag

(
ui

)ν+1
i=1 .

We have

F =
[

1 01×ν

1ν×1 Iν

]
, hence F−1 =

[
1 01×ν

−1ν×1 Iν

]
, (6.3)

where 01×ν , 1ν×1, and Iν denote the ν-dimensional row vector of zeros, the ν-
dimensional column vector of ones, and the ν × ν unit matrix, respectively. So, by
condition (2.6) of the general equivalence theorem for k = 0 the design is locally
D-optimal if and only if

u(x,β) f T (x) M−1(ξ∗,β) f (x) ≤ ν + 1 ∀x ∈ [0, 1]ν . (6.4)

The l.h.s. of (6.4) reads as

u(x,β) (ν + 1) f T (x) F−1U−1(F−1)T f (x)

= (ν + 1)u(x,β)

⎛
⎝u−1

1

(
1 −

ν∑
j=1

x j
)2 +

ν∑
i=1

u−1
i+1x

2
i

⎞
⎠ ,

and hence it is obvious that (6.4) is equivalent to (6.2). ��
Remark TheD-optimal design under a two-factormodel with support (0, 0)T , (1, 0)T ,
(0, 1)T from Theorem 5.1 , part (1) is covered by Theorem 6.1 for ν = 2. It is clear
that condition (6.2) for ν = 2 is equivalent to the inequality (1 − x1 − x2)2u

−1
1 +

x21u
−1
2 + x22u

−2
3 ≤ u−1(x,β) ∀x ∈ [0, 1]2.

In analogy toTheorem6.1wepresent locallyA-optimal designs in the next theorem.

Theorem 6.2 Consider the assumptions and notations of Theorem 6.1. Denote qi =
u−1/2
i (1 ≤ i ≤ ν + 1). Then the design ξ∗ which is supported by x∗

i (1 ≤ i ≤ ν + 1)
with weights

ω∗
1 = √

ν + 1q1/c and ω∗
i+1 = qi+1/c, i = 1, . . . , ν where c = √

ν + 1q1 +
ν∑
j=2

q j
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is locally A-optimal (at β) if and only if for all x = (x1, . . . , xν)
T ∈ [

0, 1
]ν

q21

⎛
⎝1 −

ν∑
j=1

x j

⎞
⎠

2

+
ν∑

i=1

q2i+1x
2
i + 2q1√

ν + 1

⎛
⎝

ν∑
j=1

x j − 1

⎞
⎠

ν∑
i=1

qi+1xi

≤ u−1(x,β). (6.5)

Proof As in the proof of Theorem 6.1 the design matrix F and its inverse are given
by (6.3) and we obtain

C = (
F−1)T F−1 =

[
ν + 1 −11×ν

−1ν×1 Iν

]
.

This yields
√
c11/u1 = √

ν + 1q1 and
√
cii/ui = qi for i = 2, . . . , ν + 1 according

to (3.1) in Sect. 3 with p = ν + 1. An elementary calculation shows that the weights
given by (3.1) for an A-optimal design coincide with the ω∗

i (1 ≤ i ≤ p) as stated in
the theorem. Now we show that the design ξ∗ is locally A-optimal if and only if (6.5)
holds. Let U = diag

(
u1, . . . , u p

)
, � = diag

(
ω∗
1, . . . , ω

∗
p

)
and V = �U . Then we

have

M(ξ∗,β) = FT V F = FT�UF,

tr
(
M−1(ξ∗,β)

) = tr
(
F−1U−1�−1(F−1)T

)
= c

p∑
i=1

(cii
ui

)1/2 = c2.

Since U−1/2�−1 = c diag
(
c−1/2
11 , . . . , c−1/2

pp
)
, we obtain

M−2(ξ∗,β) = F−1U−1�−1(F−1)T F−1U−1�−1(F−1)T

= c2 F−1U−1/2C∗U−1/2(F−1)T

where C∗ = diag
(
c−1/2
11 , . . . , c−1/2

pp
)
C diag

(
c−1/2
11 , . . . , c−1/2

pp
)
. So, together with

condition (2.6) of the general equivalence theorem for k = 1 the design ξ∗ is locally
A-optimal (at β) if and only if

(
U−1/2(F−1)T f (x)

)T
C∗(U−1/2(F−1)T f (x)

)
≤ u−1(x,β) ∀ x ∈ [0, 1]ν(6.6)

Straightforward calculation shows that condition (6.6) is equivalent to condition (6.5). ��

Remark Theorem 6.2 with ν = 2 covers the result stated in part (1) of Theorem 5.2.
It can be seen that with the notations of Theorem 5.2, the inequality q21 + q22 + q23 +
2√
3
q1q2 + 2√

3
q1q3 ≤ q24 is equivalent to condition (6.5) of Theorem 6.2 for ν = 2.
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6.2 Model without intercept

Consider a model of multiple factors and without intercept. We assume a first order
model

f (x) = (x1, . . . , xν)
T where x ∈ X . (6.7)

The experimental region X has an arbitrary form. Locally optimal designs will be
derived under Kiefer’s �k-criteria. The support points are located at the boundary of
X and the optimal weights are obtained according to Lemma 3.2.

Theorem 6.3 Consider model (6.7) on an experimental region X . Let a vector a =
(a1, . . . , aν)

T be given such that ai > 0 (1 ≤ i ≤ ν). Denote the design points by
x∗
i = ai ei (1 ≤ i ≤ ν) that are assumed to belong to X . For a given parameter

point β let ui = u(x∗
i ,β) (1 ≤ i ≤ ν). Let k with 0 ≤ k < ∞ be given. Let ξ∗

a be
the saturated design whose support consists of the points x∗

i (1 ≤ i ≤ ν) with the
corresponding weights

ω∗
i = (a2i ui )

−k
k+1

∑ν
j=1(a

2
j u j )

−k
k+1

(1 ≤ i ≤ ν).

Then ξ∗
a is locally �k-optimal (at β) if and only if

u(x,β)

ν∑
i=1

u−1
i a−2

i x2i ≤ 1 for all x = (x1, . . . , xν)
T ∈ X . (6.8)

Proof Define the ν × ν design matrix F = diag(ai )νi=1 with the ν × ν weight matrix

V = diag(uiω
∗
i )

ν
i=1 =

⎛
⎝

ν∑
j=1

(a2j u j )
−k
k+1

⎞
⎠

−1

diag
(
(a−2k

i ui )
1

k+1

)ν

i=1
.

Then we have

M
(
ξ∗
a ,β

) = FT V F =
⎛
⎝

ν∑
j=1

(a2j u j )
−k
k+1

⎞
⎠

−1

diag
(
(a2i ui )

1
k+1

)ν

i=1
,

M−k−1(ξ∗
a ,β

) =
⎛
⎝

ν∑
j=1

(a2j u j )
−k
k+1

⎞
⎠

k+1

diag
(
a−2
i u−1

i

)ν

i=1
, and

tr
(
M−k(ξ∗

a ,β
)) =

⎛
⎝

ν∑
j=1

(a2j u j )
−k
k+1

⎞
⎠

k+1

.
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Adopting these formulas simplifies the l.h.s. of condition (2.6) of the general equiv-

alence theorem to u(x,β)
( ∑ν

j=1(a
2
j u j )

−k
k+1

)k+1 ∑ν
i=1 u

−1
i a−2

i x2i which is bounded

by
( ∑ν

j=1(a
2
j u j )

−k
k+1

)k+1
if and only if condition (6.8) holds true. ��

The optimality condition (6.8) does not depend on the value of k. However,
from Theorem 6.3 the locally D-optimal design (k = 0) has weights ω∗

i =
1/ν (1 ≤ i ≤ ν) and the locally A-optimal design (k = 1) has weights
ω∗
i = (a2i ui )

−1/2/
∑ν

j=1(a
2
j u j )

−1/2 (1 ≤ i ≤ ν).

7 Applications

In this section, we give a discussion on the application of the previous results for the
generalized linear models. Here, emphasis will be laid on gamma and Poisson models.
However, it is known that the linear regression model is a GLM. Therefore, to begin
with, we briefly focus on the �k-optimality under a non-intercept linear model with
f (x) = (x1, . . . , xν)

T on the continuous experimental region X = [0, 1]ν, ν ≥ 2.
Here, u(x,β) = 1 for all x ∈ X so the information matrices in a linear model are
independent of β. Note that Theorem 6.3 does not cover a non-intercept linear model
onX since condition (6.8) does not hold true for ν ≥ 2. However, the l.h.s. of condition
(2.6) of the general equivalence theorem under linear models, i.e., when u(x,β) = 1,
is strictly convex and it attains its maximum at some vertices ofX . Thus the support of
any �k(or D, A)-optimal design is a subset of {0, 1}ν . As a result, in particular for D-
and A-optimality, one might apply the results of Theorem 3.1 in Huda and Mukerjee
(1988), which were obtained under linear models on {0, 1}ν .
• For odd numbers of factors ν = 2q + 1, q ∈ N, the equally weighted designs ξ∗
supported by all x∗ = (x1, . . . , xν) ∈ {0, 1}ν such that

∑ν
i=1 xi = q + 1 is either

D- or A-optimal.
• For even numbers of factors ν = 2q, q ∈ N, the equally weighted design ξ∗
supported by all x∗ = (x1, . . . , xν) ∈ {0, 1}ν such that∑ν

i=1 xi = q or
∑ν

i=1 xi =
q + 1 is D-optimal. Moreover, the design ξ∗ which assigns equal weights to all
points x∗ = (x1, . . . , xν) ∈ {0, 1}ν such that

∑ν
i=1 xi = q is A-optimal.

7.1 Gammamodel

A gamma model is given by

f T (x)β = κ

μ(x,β)
with intensity u(x,β) = ( f T (x)β)−2 ∀x ∈ X .

Here, κ is the shape parameter of the gamma distribution which is assumed to be fixed
and positive. The expected mean μ(x,β) for the gamma distribution is positive for all
x ∈ X . The parameter space including all possible parameter vector β is determined
by the assumption f T (x)β > 0 for all x ∈ X .
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Let the experimental region be the cubeX = [0, 1]ν, ν > 1. In Gaffke et al. (2019)
we showed that the locally optimal designs under a first order gamma model f (x) =
(1, x1, . . . , xν)

T are only supported by the vertices of the cube [0, 1]ν . Therefore, in
the following we focus on the set of vertices {0, 1}ν .

In what follows, firstly we consider a two-factor gamma model with the linear
predictor η(x,β) = β0 + β1x1 + β2x2 and experimental region X = [0, 1]2. Denote
x∗
1 = (0, 0)T , x∗

2 = (1, 0)T , x∗
3 = (0, 1)T and x∗

4 = (1, 1)T . Let uk = u(x∗
k ,β)

(1 ≤ k ≤ 4), i.e.,

u1 = β−2
0 , u2 = (β0 + β1)

−2, u3 = (β0 + β2)
−2, u4 = (β0 + β1 + β2)

−2.

In view of Corollaries 5.1 and 5.2 the following explicit results are immediate.

Corollary 7.1 Consider a gamma model with f (x) = (
1, x1, x2

)T
and the experimen-

tal region X = [0, 1]2. Let β = (β0, β1, β2)
T be a parameter point such that β0 > 0,

β0 + β1 > 0, β0 + β2 > 0, and β0 + β1 + β2 > 0. Then the unique locally D-optimal
design ξ∗ (at β) is as follows.

(1) ξ∗ assigns equal weights 1/3 to x∗
1, x

∗
2, x

∗
3 if and only if β2

0 − β1β2 ≤ 0.
(2) ξ∗ assigns equal weights 1/3 to x∗

1, x
∗
2, x

∗
4 if and only if (β0 + β1)

2 + β1β2 ≤ 0.
(3) ξ∗ assigns equal weights 1/3 to x∗

1, x
∗
3, x

∗
4 if and only if (β0 + β2)

2 + β1β2 ≤ 0.
(4) ξ∗ assigns equal weights 1/3 to x∗

2, x
∗
3, x

∗
4 if and only if β

2
0 + β2

1 + β2
2 + β1β2 +

2β0(β1 + β2) ≤ 0.
(5) Otherwise, ξ∗ is supported by the four points x∗

1, x
∗
2, x

∗
3, x

∗
4.

Proof In view of Corollary 5.1, part (i), straightforward computations show that the
corresponding conditions of parts (1)–(4) are equivalent to u−1

1 + u−1
2 + u−1

3 ≤
u−1
4 , u−1

1 +u−1
2 +u−1

4 ≤ u−1
3 , u−1

1 +u−1
3 +u−1

4 ≤ u−1
2 , and u−1

2 +u−1
3 +u−1

4 ≤ u−1
1 ,

respectively.

Remark According to Corollary 7.1, part (5), the subregion where a four-point design
is D-optimal has been determined by computer algebra and is given below.

• −β0 < β1 < 0 and 1
2

(√−(3β2
1 + 4β0β1)−(β1+2β0)

)
< β2 < −(β1+β0)

2/β1.
• β1 = 0 and β2 > −β0.

• β1 > 0 and 1
2

(√
4β0β1 + β2

1 − (β1 + 2β0)
)

< β2 < β2
0/β1.

On each subregion the optimal weights of a D-optimal design depend on the parameter
values.

If β0 > 0 define the ratios γ1 = β1/β0 and γ2 = β2/β0. So we have γ1 > −1,
γ2 > −1 and γ1 + γ2 > −1. Without loss of generality the conditions of the D-
optimal designs given in Corollary 7.1 can be written in terms of γ1 and γ2. In the left
panel of Fig. 1 the parameter subregions of γ1 and γ2 are depicted where the designs
given by Corollary 7.1 are locally D-optimal. In particular, the design with support
x∗
1, x

∗
2, x

∗
3 is locally D-optimal over the larger subregion for positive larger values of

γ1 and γ2. The diagonal line represents the case of equal effects β1 = β2 = β where
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Fig. 1 Dependence of optimal designs under gamma models on β; Left panel: D-optimal designs.
Right panel: A-optimal designs. supp(ξ∗

i jk ) = {x∗
i , x

∗
j , x

∗
k } ⊂ {x∗

1, x
∗
2, x

∗
3, x

∗
4} and supp(ξ∗

1234) =
{x∗

1, x
∗
2, x

∗
3, x

∗
4}. The diagonal dashed line is γ2 = γ1 where γi = βi /β0, i = 1, 2

β > −(1/2)β0. In particular, in the case −(1/3)β0 < β < β0 the design is supported
by the four design points with optimal weights

ω∗
1 = 3γ + 1

4(2γ + 1)
, ω∗

2 = ω∗
3 = (γ + 1)2

4(2γ + 1)
, ω∗

4 = 1 − γ

4
, where γ = β

β0
.

These weights as functions of γ are exhibited in Fig. 2. Obviously, the weights are
positive over the respective domain γ ∈ (−1/3, 1) and 1/4 ≤ ω∗

2 = ω∗
3 ≤ 1/3. The

design ξ∗ at γ = 0 assigns uniform weights 1/4 to the set of points {x∗
1, x

∗
2, x

∗
3, x

∗
4}.

This case is equivalent to an ordinary linear regression model with two binary factors.
At the limits of (−1/3, 1) the D-optimal four-point design becomes a D-optimal
saturated design. This means that at γ = −1/3 we have ω∗

1 = 0 and at γ = 1 we have
ω∗
4 = 0.

Corollary 7.2 Under the assumptions and notations of Corollary 7.1. The unique
locally A-optimal design (at β) is as follows.

(1) ξ∗ =
(

x∗
1 x∗

2 x∗
3√

3β0/c (β0 + β1)/c (β0 + β2)/c

)
if and only if

(1 + 2/
√
3)β2

0 + (1/
√
3)β0(β1 + β2) − β1β2 ≤ 0.

(2) ξ∗ =
(

x∗
1 x∗

2 x∗
4√

2β0/c
√
2(β0 + β1)/c (β0 + β1 + β2)/c

)
if and only if

(3 + √
2)β2

0 + (2 + √
2)(β2

1 + β1β2) + (5 + 2
√
2)β0β1 + √

2β0β2 ≤ 0.

(3) ξ∗ =
(

x∗
1 x∗

3 x∗
4√

2β0/c
√
2(β0 + β2)/c (β0 + β1 + β2)/c

)
if and only if

(3 + √
2)β2

0 + (2 + √
2)(β2

2 + β1β2) + (5 + 2
√
2)β0β2 + √

2β0β1 ≤ 0.
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1892 O. Idais

Fig. 2 Effect of γ on the optimal weights ω∗
1,ω

∗
2 and ω∗

4 of the locally D-optimal four-point design under
a two-factor gamma model, where γ = β/β0 and β1 = β2 = β

(4) ξ∗ =
(

x∗
2 x∗

3 x∗
4√

2(β0+β1)/c
√
2(β0+β2)/c

√
3(β0+β1+β2)/c

)
if and only if

(3+4
√
2/3)(β2

0+β1β2)+2(1 + √
2/3)(β2

1+β2
2 ) + (5 + 6

√
2/3)β0(β1 + β2) ≤ 0.

For each case (1) – (4), the constant c appearing in the weights equals the sum of
the numerators of the three ratios.

(5) Otherwise, ξ∗ is supported by the four design points x∗
1, x

∗
2, x

∗
3, x

∗
4.

Proof The result follows from Corollary 5.2 by denoting uk = u(x∗
k ,β) (1 ≤ k ≤ 4)

and qi = u−1/2
i (1 ≤ i ≤ 4). ��

Again, the conditions ofA-optimal designs can bewritten in terms of the ratios γ1 =
β1/β0 and γ2 = β2/β0, β0 > 0. In the right panel of Fig. 1 the parameter subregions
of γ1 and γ2 are depicted where the designs given by Corollary 7.2 are locally A-
optimal. Comparing to the left panel under D-optimality, similar interpretation might
be observed. In particular, the largest subregion of the parameter points is forA-optimal
designs with support {x∗

1, x
∗
2, x

∗
3}.

Remark For the multiple-factor gamma model f (x) = (1, x1, . . . , xν)
T on the exper-

imental region X = [0, 1]ν, ν ≥ 2, the result of Burridge and Sebastiani (1994) can
be applied. It was shown that the design which assigns equal weights 1/(ν + 1) to
the design points x∗

1 = (0, . . . , 0)T , x∗
2 = (1, . . . , 0)T , . . . , x∗

ν+1 = (0, . . . , 1)T is
locally D-optimal for a given β = (β0, β1, . . . , βν)

T if and only if β2
0 ≤ βiβ j , 1 ≤

i < j ≤ ν. This result can be considered as a special case of Theorem 6.1. Note that
for ν = 2 this result is also covered by part (1) of Corollary 7.1.

Now consider a non-intercept gamma model with multiple factors. The linear pre-
dictor can be written as η(x,β) = xTβ = ∑ν

i=1 βi xi . Let the experimental region
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be given by X = [0,∞)ν \ {0} with intensity u(x,β) = (xTβ)−2 for all x ∈ X .
The parameter space is determined by β ∈ (0,∞)ν , i.e., βi > 0 for all (1 ≤ i ≤ ν).
From Theorem 6.3 the following corollary is obtained for the gamma model without
intercept.

Corollary 7.3 Consider a non-intercept gamma model with f (x) = x on the exper-
imental region X = [0,∞)ν \ {0} and intensity u(x,β) = (xTβ)−2 for all x ∈ X .
For a given vector a = (a1, . . . , aν)

T where ai > 0 (1 ≤ i ≤ ν) let x∗
i = ai ei

for all i = 1, . . . , ν. Let k with 0 ≤ k < ∞ be given. For a given parameter point
β ∈ (0,∞)ν let ξ∗

a be the saturated design whose support consists of the points x∗
i

(1 ≤ i ≤ ν) with the corresponding weights

ω∗
i = β

2k
k+1
i

∑ν
j=1 β

2k
k+1
j

(1 ≤ i ≤ ν).

Then ξ∗
a is locally �k-optimal (at β).

Proof Let ui = u(x∗
i ,β) (1 ≤ i ≤ ν). Thus ui = (aiβi )

−2 (1 ≤ i ≤ ν). Then
condition (6.8) of Theorem 6.3 is equivalent to −2

∑ν
i< j=1 βiβ j xi x j ≤ 0 for all

x ∈ X . Since βi > 0, xi > 0 (1 ≤ i ≤ ν) the condition holds true. ��
The optimal weights given in Corollary 7.3 are the same irrespective of the values

a1, . . . , aν . The reason is that the information matrix under a gamma model without
intercept is invariant with respect to simultaneous scaling of the factors. Therefore,
we get M(ai ei ,β) = M(ei ,β), i = 1, . . . , ν. Note also that Corollary 7.3 covers
Theorem 3.1 in Idais and Schwabe (2020) who provided locally D- and A-optimal
designs for non-intercept gamma models.

7.2 Poissonmodel

A Poisson model is given by

f T (x)β = log
(
μ(x,β)

)
with intensity u(x,β) = exp

(
f T (x)β

) ∀x ∈ X .

Here, the expected meanμ(x,β) for the Poisson distribution is positive for all x ∈ X .
The parameter vector β ∈ R

p is a real-valued vector.
For a two-factor model with linear predictor η(x,β) = β0 + β1x1 + β2x2 and

experimental region X = {0, 1}2 the next corollary presents the locally D-optimal
designs. The same results for D-optimality were obtained in Graßhoff et al. (2013)
under the Rasch Poisson counts model in item response theory. Denote x∗

1 = (0, 0)T ,
x∗
2 = (1, 0)T , x∗

3 = (0, 1)T and x∗
4 = (1, 1)T . Let uk = u(x∗

k ,β) (1 ≤ k ≤ 4), i.e.,

u1 = exp(β0), u2 = exp(β0 + β1), u3 = exp(β0 + β2), u4 = exp(β0 + β1 + β2).
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Corollary 7.4 Consider a Poisson model with f (x) = (
1, x1, x2

)T
and the experimen-

tal region X = {0, 1}2. Let β = (β0, β1, β2)
T be a given parameter point. Then the

unique locally D-optimal design ξ∗ (at β) is as follows.

(1) ξ∗ assigns equal weights 1/3 to x∗
1, x

∗
2, x

∗
3 if and only if

β2 ≤ log
(
(1 + exp(β1))/(1 − exp(β1))

)
.

(2) ξ∗ assigns equal weights 1/3 to x∗
1, x

∗
2, x

∗
4 if and only if

β2 ≤ log
(
(1 − exp(−β1))/(1 + exp(−β1))

)
.

(3) ξ∗ assigns equal weights 1/3 to x∗
1, x

∗
3, x

∗
4 if and only if

β2 ≤ − log
(
(1 − exp(β1))/(1 + exp(β1))

)
.

(4) ξ∗ assigns equal weights 1/3 to x∗
2, x

∗
3, x

∗
4 if and only if

β2 ≤ − log
(
(1 − exp(−β1))/(1 + exp(−β1))

)
.

(5) Otherwise, ξ∗ is supported by the four points x∗
1, x

∗
2, x

∗
3, x

∗
4.

Proof The proof is analogous to that of Corollary 7.1. ��
Remark Graßhoff et al. (2013) showed that a four-point design from part (5) of Corol-
lary 7.4 is locally D-optimal in the subregion

|β2| < log
(exp(|β1|) + 1

exp(|β1|) − 1

)
.

Next we provide the locally A-optimal designs.

Corollary 7.5 Under the assumptions and notations of Corollary 7.4 the unique locally
A-optimal design ξ∗ (at β) is as follows.

(1) ξ∗ =
(

x∗
1 x∗

2 x∗
3√

3/c exp(−β1/2)/c exp(−β2/2)/c

)
if and only if

exp(−β1) + exp(−β2) + exp(−(β1 + β2)) + exp(−(β1 + β2)/2) + 2
√
2/3(exp(

−(2β1 + β2)/2)) + exp(−(2β2 + β1)/2)) − 1 ≤ 0.

(2) ξ∗ =
(

x∗
1 x∗

2 x∗
4√

2/c
√
2 exp(−β1/2)/c exp(−(β1 + β2)/2)/c

)
if and only if

exp(β1) + exp(−β2) + exp(β1 − β2)

+ exp(β1 − β2/2) + √
2 exp(β1/2 − β2) − 1 ≤ 0.

(3) ξ∗ =
(

x∗
1 x∗

3 x∗
4√

2/c
√
2 exp(−β2/2)/c exp(−(β1 + β2)/2)/c

)
if and only if

exp(β2) + exp(−β1) + exp(β2 − β1)

+ exp(β2 − β1/2) + √
2 exp(β2/2 − β1) − 1 ≤ 0.

(4) ξ∗ =
(

x∗
2 x∗

3 x∗
4√

2 exp(−β1/2)/c
√
2 exp(−β2/2)/c

√
3 exp(−(β1 + β2)/2)/c

)
if and

only if

exp(β1) + exp(β2) + exp(β1 + β2) + 2
√
2/3(exp(β2 + β1/2)

+ exp(β1 + β2/2)) − 1 ≤ 0.
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Fig. 3 Dependence of optimal designs under Poisson models on β; Left panel: D-optimal designs.
Right panel: A-optimal designs. supp(ξ∗

i jk ) = {x∗
i , x

∗
j , x

∗
k } ⊂ {x∗

1, x
∗
2, x

∗
3, x

∗
4} and supp(ξ∗

1234) =
{x∗

1, x
∗
2, x

∗
3, x

∗
4}. The diagonal dashed line is β2 = β1

For each case (1) – (4), the constant c appearing in the weights equals the sum of
the numerators of the three ratios.

(5) Otherwise, ξ∗ is supported by the four design points x∗
1, x

∗
2, x

∗
3, x

∗
4.

Figure 3 shows the dependence of the locally D- and A-optimal designs from
Corollaries 7.4 and 7.5, respectively on the parameters β1 and β2.

Remark For themultiple-factor Poissonmodel f (x) = (1, x1, . . . , xν)
T on the exper-

imental regionX = [0, 1]ν, ν ≥ 2, the result of Russell et al. (2009) can be applied. It
was shown that the design which assigns equal weights 1/(ν + 1) to the design points
x∗
1 = (0, . . . , 0)T , x∗

2 = (1, . . . , 0)T , . . . , x∗
ν+1 = (0, . . . , 1)T is locally D-optimal

at a given β = (β0, β1, . . . , βν)
T such that βi = −2, i = 1, . . . , ν.

Now consider a non-intercept Poisson model with multiple factors. The linear pre-
dictor can be written as η(x,β) = xTβ = ∑ν

i=1 βi xi . Let the experimental region
be given by X = {0, 1}ν with intensity u(x,β) = exp

(
xTβ

)
for all x ∈ X . In the

following we will apply Theorem 6.3 for a Poisson model without intercept. Let us
restrict to the case of ai = 1 (1 ≤ i ≤ ν), i.e., the design points are the unit vectors
ei (1 ≤ i ≤ ν). As a result, condition (6.8) is simplified as presented in the following
corollary.

Corollary 7.6 Consider a non-intercept Poisson model with f (x) = x on the experi-
mental region X = {0, 1}ν, ν ≥ 2 and intensity u(x,β) = exp

(
xTβ

)
for all x ∈ X .

For a given parameter point β = (β1, . . . , βν)
T define ui = exp(βi ) (1 ≤ i ≤ ν) and

denote by u[1] ≥ u[2] ≥ · · · ≥ u[ν] the descending order of u1, u2, . . . , uν . Let k be
given with 0 ≤ k < ∞. Let ξ∗ be the saturated design supported by the unit vectors

ei (1 ≤ i ≤ ν) with weights ω∗
i = u

−k
k+1
i /

∑ν
j=1 u

−k
k+1
j (1 ≤ i ≤ ν). Then ξ∗ is locally

�k-optimal (at β) if and only if
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u[1] + u[2] ≤ 1. (7.1)

Proof Condition (6.8) of Theorem 6.3 reduces to

exp

(
ν∑

i=1

βi xi

)
ν∑

i=1

exp(−βi )x
2
i ≤ 1 ∀x ∈ X . (7.2)

For any x = (x1, . . . , xν) ∈ {0, 1}ν, ν ≥ 2 define the index set S ⊆ {1, . . . , ν} such
that xi = 1 if i ∈ S and xi = 0 else. So for x described by S ⊆ {1, . . . , ν}
and s = #S, if s = 0 (i.e., S = ∅) then the l.h.s. of (7.2) is zero. If s = 1,
inequality (7.2) becomes an equality. Let s ≥ 2. Then the l.h.s. of (7.2) is equal
to exp(

∑
i∈S βi )

∑
i∈S exp(−βi ) which thus rewrites as

∏
i∈S ui

∑
i∈S u

−1
i or equiv-

alently as
∑

i∈S
∏

j∈S\{i} u j . By the the descending order u[1] ≥ u[2] ≥ · · · ≥ u[ν] of
u1, u2, . . . , uν we obtain for all subsets S ⊆ {1, . . . , ν} of the same size s ≥ 2,

s∑
i=1

u−1
[i]

s∏
i=1

u[i] =
s∑

i=1

s∏
i 
= j=1

u[ j] ≥
∑
i∈S

∏
j∈S\{i}

u j .

Denote Ts = ∑s
i=1 u

−1
[i]

∏s
i=1 u[i]. Hence, inequality (7.2) is equivalent to Ts ≤ 1 for

all s = 2, . . . , ν. Then it is sufficient to show that

u[1] + u[2] ≤ 1 ⇐⇒ Ts ≤ 1 ∀s = 2, . . . , ν.

For “⇐�”, T2 = u[1] + u[2] ≤ 1. For “�⇒”, we use induction. Firstly, note that
T2 = u[1] + u[2] thus Ts ≤ 1 is true for s = 2. Now assume Ts ≤ 1 is true for some
s = q where 2 ≤ q ≤ ν. We want to show that it is true for s = q + 1. We can write

Tq+1 =
( q∑

i=1

u−1
[i] + u−1

[q+1]

) ( q∏
i=1

u[i]

)
u[q+1]

= Tqu[q+1] +
q∏

i=1

u[i] = Tqu[q+1] + Tq

( q∑
i=1

u−1
[i]

)−1

= Tq

⎛
⎝u[q+1] +

( q∑
i=1

u−1
[i]

)−1
⎞
⎠

since

( q∑
i=1

u−1
[i]

)−1

≤ 1

q
u[1] and u[q+1] + 1

q
u[1] ≤ T2 = u[1] + u[2]

≤ 1 we have

Tq+1 ≤ Tq

(
u[q+1] + 1

q
u[1]

)
≤ TqT2 ≤ 1.
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