Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/63037
Titel: Fully correlated stochastic inter-particle collision model for Euler-Lagrange gas-solid flows
Autor(en): Wachem, Berend vanIn der Gemeinsamen Normdatei der DNB nachschlagen
Curran, Thomas
Evrard, Fabien
Erscheinungsdatum: 2020
Art: Artikel
Sprache: Englisch
URN: urn:nbn:de:gbv:ma9:1-1981185920-649886
Schlagwörter: Stochastic collision model
Lagrangian particles
Turbulent gas-solid flows
Zusammenfassung: In Lagrangian stochastic collision models, a fictitious particle is generated to act as a collision partner, with a velocity correlated to the velocity of the real colliding particle. However, most often, the fluid velocity seen by this fictitious particles is not accounted for in the generation of the fictitious particle velocity, leading to a de-correlation between the fictitious particle velocity and the local fluid velocity, which, after collision, leads to an unrealistic de-correlation of the real particle velocity and the fluid velocity as seen by the particle. This de-correlation, in turn, causes a spurious decrease of the particle kinetic energy, even though the collisions are assumed perfectly elastic. In this paper, we propose a new model in which the generated fictitious particle velocity is correctly correlated to both the real particle velocity and the local fluid velocity at the particle, hence preventing the spurious loss of the total particle kinetic energy. The model is suitable for small inertial particles. Two algorithms for integrating the collision frequency are also compared to each other. The models are validated using large eddy simulation (LES) of mono-dispersed particle- laden stationary homogeneous isotropic turbulence. Simulations are conducted with spherical particles with different turbulent Stokes number, Stt = [0.75 − 5.8] , and volume fractions, alpha p = [0.014 − 0.044] , and are compared to the results of the LES using a deterministic discrete particle simulation model.
URI: https://opendata.uni-halle.de//handle/1981185920/64988
http://dx.doi.org/10.25673/63037
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Sponsor/Geldgeber: Projekt DEAL 2020
Journal Titel: Flow, turbulence and combustion
Verlag: Springer Science + Business Media B.V.
Verlagsort: Dordrecht [u.a.]
Band: 105
Originalveröffentlichung: 10.1007/s10494-020-00111-7
Seitenanfang: 935
Seitenende: 963
Enthalten in den Sammlungen:Fakultät für Verfahrens- und Systemtechnik (OA)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Wachem et al._Fully correlated_2020.pdfZweitveröffentlichung1.71 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen