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Abstract
In Lagrangian stochastic collision models, a fictitious particle is generated to act as a col-
lision partner, with a velocity correlated to the velocity of the real colliding particle. How-
ever, most often, the fluid velocity seen by this fictitious particles is not accounted for in 
the generation of the fictitious particle velocity, leading to a de-correlation between the 
fictitious particle velocity and the local fluid velocity, which, after collision, leads to an 
unrealistic de-correlation of the real particle velocity and the fluid velocity as seen by the 
particle. This de-correlation, in turn, causes a spurious decrease of the particle kinetic 
energy, even though the collisions are assumed perfectly elastic. In this paper, we propose 
a new model in which the generated fictitious particle velocity is correctly correlated to 
both the real particle velocity and the local fluid velocity at the particle, hence preventing 
the spurious loss of the total particle kinetic energy. The model is suitable for small inertial 
particles. Two algorithms for integrating the collision frequency are also compared to each 
other. The models are validated using large eddy simulation (LES) of mono-dispersed par-
ticle-laden stationary homogeneous isotropic turbulence. Simulations are conducted with 
spherical particles with different turbulent Stokes number, Stt = [0.75 − 5.8] , and volume 
fractions, �p = [0.014 − 0.044] , and are compared to the results of the LES using a deter-
ministic discrete particle simulation model.

Keywords  Stochastic collision model · Lagrangian particles · Turbulent gas-solid flows

1  Introduction

Turbulent two-phase flows are found in various environmental, biological and industrial 
processes. Typical examples are various, such as the break-up and coalescence of cloud 
droplets (Xue et al. 2008), collisions of blood cells (Chesnutt and Marshall 2009), and flu-
idized beds (van Wachem et al. 2001b), to name just a few. The complexity of the underly-
ing physics are due to the multi-level of interactions occurring in such problems, such as 
particle-fluid and particle–particle interactions. When considering solid particles, the latter 
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interaction is essentially reduced to analysing collisions, although other features such as 
fragmentation (Bruchmüller et al. 2011) may also be considered. In the case of particles, a 
collision occurs when the distance between two particles is equal to their average diameter.

In numerical simulations, the Lagrangian framework is commonly used to predict the 
behaviour of particles in turbulent gas-solid flows. The trajectories of individual particles 
are modelled by solving Newton’s second law, where various forces such as drag, grav-
ity and the forces arising from collisions are typically taken into account to compute the 
motion of the particles. The particle solver is coupled with either Direct Numerical Sim-
ulation (DNS) or Large Eddy Simulation (LES), which are numerical tools to solve the 
dynamics of turbulent flows. The former may be more accurate, as it captures all the scales 
of the turbulence, but it is computationally very expensive for flows with a high Reynolds 
number. LES offers a good balance between accuracy and computational time. The level of 
coupling between the particles and the turbulent flow depends mainly on the volume frac-
tion and mass loading (Balachandar and Eaton 2010). If the volume fraction is higher than 
about 10−3 , the interaction between particles, i.e. collisions, must be taken into account, 
and simulations are described as four-way coupled.

In the Lagrangian framework, particle collisions are handled in two steps : (1) the detec-
tion of colliding particles, and (2) the calculation of the post-collisional velocities. Two 
methods are typically found in the literature to solve the latter: the hard-sphere model (Maw 
et al. 1976) and the soft-sphere model (Cundall and Strack 1979). The soft-sphere model 
is also commonly referred to as discrete element model or distinct element model (DEM), 
and allows for enduring contact between two particles. In this work, the hard-sphere model 
is used, and is referred to as discrete particle simulation (DPS). In DPS, the particle colli-
sions are assumed binary and instantaneous, and this model is therefore suitable for volume 
fractions up to values corresponding to moderately dense flows. At higher volume fractions 
the assumptions of binary and instantaneous collisions are no longer valid.

To numerically detect a collision, a straightforward method is to evaluate the distance 
between all particle pairs (Allen and Tildesley 1989). A basic implementation of this 
would require the checking of all particle pairs, therefore the computational cost scales as 
O(N2

p
) . Using optimised techniques, this leads to a search cost of O(Np log(Np)) (Hopkins 

and Louge 1991), which is still computationally expensive for a large number of particles, 
hence the motivation for stochastic approaches, which typically have a cost of O(Np) (Som-
merfeld 1999).

Oesterle and Petitjean (1993) have proposed a stochastic Lagrangian model where, 
depending on the collision probability, a fictitious colliding particle partner is generated 
along the trajectory of a real particle. Following a rejection-acceptance method, a certain 
“random” collision can be selected to be carried out. In case a collision event occurs, a fic-
titious particle is generated, with a random velocity, which has an expectation equal to the 
local averaged particle velocity. A hard-sphere model is subsequently applied to compute 
the post-collisional velocity of the real particle. However, this model does not take into 
account the particle–particle velocity correlation existing between two colliding particles 
in a turbulent flow. Sommerfeld (1999) proposed an improved version of the model where 
the generated fictitious particle velocity is directly correlated to the real particle velocity. 
This model is referred to as the stochastic one particle (SOP) model. Although this model 
shows promising results, Although in this model the velocity of the fictitious particle is 
correlated to the velocity of the real particle, and there is thus an indirect coupling between 
the velocity of the fictitious particle and the fluid velocity, there is no direct correlation 
between the fictitious particle velocity and the fluid velocity. This means that the correla-
tion between the velocity of the fluid and the velocity of the fictitious particle is too small. 
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This leads to a spurious de-correlation between the real particle velocity and the local 
fluid velocity, which, in turn, decreases the particle kinetic energy. Berlemont et al. (2001) 
adapted a similar stochastic model for the tracking of multiple particles. To overcome the 
de-correlation of the fluid-particle velocity, they proposed an ad hoc method that modifies 
the post-collisional fluid velocity, so it then satisfies, on average, the fluid-particle velocity 
covariance. However, the distribution of collision properties, such as the angles, remained 
the same.

These stochastic approaches also rely on the evaluation of the collision rate, collision 
probability, or collision frequency (Zaichik et al. 2003). In the work of Sommerfeld (1999), 
a local collision frequency is computed based on the relative velocity between the real and 
fictitious particles. However, for homogeneous turbulence, there exist multiple models to 
evaluate the average, or global, collision frequency, which is proportional to the average 
of the relative velocity norm between colliding particles (Franklin et  al. 2007). In order 
to correctly evaluate the global collision frequency, it is important to recognize the vari-
ous physical mechanisms responsible for particle–particle collisions, such as shear induced 
collisions or turbulent induced particle agitation (Meyer and Deglon 2011). The work of 
Saffman and Turner (1956) focuses on the relative velocity induced by shear flow for zero-
inertia particles, whereas Abrahamson (1975) worked on the collision frequency of inertial 
particles in vigorously turbulent flows. In his study, the velocities of colliding particles are 
assumed to be uncorrelated and follow a Gaussian distribution. However, colliding parti-
cle velocities are correlated to a certain degree, especially in the case of small particles, 
as their motion is driven by the same turbulent eddies. Lavieville et al. (1995) adopted a 
more general approach, assuming that the velocity distributions of the particle fluctuat-
ing velocities are Maxwellian. The fluid-particle velocity correlation distribution is also 
assumed a joint normal distribution. The final expression of the fluid-particle velocity cor-
relation is derived by introducing a fluid-particle correlation coefficient. In their study with 
small, mono-dispersed particles, the correlation between the particle velocity and the local 
fluid velocity seen by the particle is taken into account in the computation of the collision 
frequency. The statistics of the fluid velocity seen by two colliding particles is the same, 
i.e. assuming particles smaller than the smallest turbulent scale. The results of Laviev-
ille et al. (1995) are compared to LES and show generally good results, depending on the 
kinetic energy of the particles and their Stokes number. Pigeonneau (1998) has adopted a 
very similar theory and has extended this theory for slightly bigger particles and droplets, 
accounting for the fact that the fluid velocity as seen by the two particles in the collision 
are different. This is achieved by an extrapolation of the expression of the fluid statistics 
across the length of the particle, by accounting for the first term of the Taylor expansion in 
the expression.

Other correction terms have also been integrated in the collision frequency computa-
tion, such as the collision efficiency (Thomas et al. 1999) or the radial distribution function 
at contact (Sundaram and Collins 1997) which is used to integrate the effect of preferential 
concentration.

This paper presents a new fully correlated model for dealing with stochastic collisions 
in Euler–Lagrangian gas–solid flows. Although this model assumes that the velocity fluc-
tuations of the particle and of the fluid as seen by the particle are normally distributed, we 
do not assume that the fluid-particle covariances are normally distributed, as in Lavieville 
et al. (1995) and Pigeonneau (1998). Using a Cholesky decomposition of the formulated 
covariance matrix and assuming that the dimensions behave independent, we propose an 
expression for the fictitious particle velocity which satisfies the solution of this covariance 
matrix. In our model, we assume the particles are small, so that we can take the statistics 
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of the fluid velocity as seen by the particle to be the same for the real and the fictitious 
particle. The generated fictitious particle velocity is directly correlated to both the real par-
ticle velocity and the local fluid velocity seen. The spurious decrease of the particle kinetic 
energy is prevented, while the model ensures that the collision physics remain consistent, 
e.g. the distribution of collision angles depends on the particle inertia. Two different algo-
rithms to evaluate the collision frequency in such stochastic models are also discussed and 
compared. LES simulations of stationary homogeneous isotropic turbulence are performed 
following the configuration of Lavieville et  al. (1995). The stochastic model results are 
validated against deterministic LES–DPS simulations. The flows considered are dilute 
enough to apply the hard-sphere model but dense enough so to allow relevant statistics of 
collisions. Mono-dispersed solid particles are assumed perfectly elastic, i.e. with no loss of 
energy during collisions.

This manuscript is organised as follows. Section 2 presents the numerical methods used 
in the manuscript, including the fluid equations of motion, the fluid turbulence forcing, the 
particle equations of motion, the general collision model, and the implementation of the 
deterministic collision model. Section 2 also presents the framework of generating a ficti-
tious particle for the stochastic collision framework and presents the stochastic one particle 
(SOP) model. Section 3 presents the newly proposed correlation stochastic one particle 
(CSOP) model. In Sect. 4 simulations of four cases of statistically homogeneous isotropic 
particle-laden turbulence are pursued, of which the results are discussed and the various 
treatments are compared. Finally, Sect. 5 draws the conclusions from this work.

2 � Numerical Methods

The algorithm to predict gas-solid flow consists of three steps: (1) the Eulerian turbulent 
flow dynamics are resolved using direct numerical simulation (DNS) or a model for tur-
bulence; (2) the particle dynamics are then evaluated via a particle-transport step; (3) the 
inter-particle collisions are treated and the particle post-collisional velocities computed. 
These will be shortly discussed below.

2.1 � Fluid Phase Modelling

In this work, we will consider particles in a box of statistically homogeneous isotropic tur-
bulence. Such a flow has been used for many studies over a time-span of more than 4 dec-
ades (Riley and Patterson 1974) and has been used to analyze the behaviour of turbulence 
(Lundgren 2003) as well as studying the behaviour of particles in such flows (Boivin et al. 
1998).

The turbulence in the box will be generated and sustained by forcing (Mallouppas et al. 
2013). As in this work the particle volume fraction and the exchange of momentum to 
the fluid are very low, they can both be safely neglected. However, the flow is sufficiently 
dense, that particle collisions cannot be neglected. Considering LES, the fluid phase gov-
erning equations are then given by

(1)
�ṽf ,i

�xi
= 0
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where the operator ⋅̃  represents the filtering, ṽf ,i is the filtered fluid velocity in the i-direc-
tion, p̃ is the filtered pressure, and fj is the forcing term to sustain a turbulent flow (Mal-
louppas et al. 2013), �̃ij is the filtered viscous stress tensor and �m

ij
 represents the sub-grid 

stresses. For an incompressible flow, the filtered viscous stress tensor is defined as

where �f  is the molecular, dynamic fluid viscosity. The forcing term (Mallouppas et  al. 
2013) sustains the kinetic energy of the homogeneous isotropic turbulence at a given turbu-
lence kinetic energy, q2

f ,wanted
 , and reads as

where q2
f
 is the turbulence kinetic energy, �t the timestep, and vj,triggered is a temporally cor-

related velocity field randomly triggered from a turbulence energy spectrum. The subscript 
wanted corresponds to the value which is aimed for, and the subscript computed corre-
sponds to the currently determined value.

Following Boussinesq’s hypothesis, the sub-grid stresses are proportional to the local 
filtered rate of strain, S̃ij , through the sub-grid viscosity, �SGS , which is computed using 
the Smagorinsky model (Smagorinsky 1963)

where CS is the Smagorinsky constant and � the filter width. Simulations are performed 
using an in-house CFD research code, MultiFlow (van Wachem et  al. 2000). The 
Navier–Stokes equations are solved on a collocated grid. The variable discretization uses 
a central scheme for the advection term and a second order Euler scheme for the transient 
term. The velocity-pressure solver is fully implicit and coupled (Bartholomew et al. 2018; 
Denner and van Wachem 2014; Xiao et al. 2017).

2.2 � Particle Phase Modelling

The equation of motion of particles has been derived from Newtons second law (Maxey 
and Riley 1983). Considering heavy particles, 𝜌p ≫ 𝜌f  where �p and �f  are the particle 
and fluid density, respectively, considering that the particles are smaller than the small-
est turbulent length scale, and neglecting gravity, the drag is the only relevant force, and 
the equation of motion of the particle is

(2)
�ṽf ,j

�t
+

�(̃vf ,jṽf ,i)

�xi
= −

1

�f

�p̃

�xj
+

1

�f

��̃ij

�xi
−

1

�f

��
m
ij

�xi
+ fj

(3)�̃ij = �f

(
�ṽf ,i

�xj
+

�ṽf ,j

�xi

)
,

(4)fj =
1

�t

√
q2
f ,wanted

−

√
q2
f ,computed√

q2
f ,wanted

× vj,triggered

(5)
�
m
ij
= −2�SGSS̃ij = −�SGS

(
�ṽf ,i

�xj
+

�ṽf ,j

�xi

)

�SGS = �f (CS�)
2

√
2S̃ijS̃ij
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where xp,i and vp,i are the particle position and velocity in the i-direction, respectively, vf@p,i 
is the undisturbed fluid velocity as seen by the particle (Gatignol 1983), �p is the particle 
momentum response time, which is a time scale measuring the time required for a particle 
to respond to a change in flow velocity and defined as (Crowe et al. 1998)

where dp is the particle diameter and fD is the particle drag function, which depends on the 
particle Reynolds number, where the particle Reynolds number is defined as

and the particle drag function as

where CD is the drag coefficient of the particle given as (Schiller and Naumann 1933)

2.3 � Hard‑Sphere Collision Model

In a hard-sphere model, particles collide when their distance is equal to their averaged 
diameter. In the hard-sphere model, collisions are considered instantaneous and binary. 
From the conservation of momentum, the particle post-collisional velocities, vnew

p1
 and vnew

p2
 , 

are computed as

where Ji is the impulse exchange vector which, neglecting friction, is given as (van 
Wachem et al. 2001a)

(6)

dxp,i

dt
= vp,i

dvp,i

dt
=

1

�p

(vf@p,i − vp,i)

(7)�p =
�pd

2
p

18�f fD

(8)Rep =
𝜌f dp|vf@p,i − vp,i|

𝜇f

> 1

(9)fD =
CDRep

24

(10)CD =

24
[
1 + 0.15Re0.687

p

]

Rep
.

(11)

vnew
p1,i

= vp1,i +
Ji

mp

vnew
p2,i

= vp2,i −
Ji

mp

(12)Ji =
mp

2
(1 + ec)(wjkj)ki
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where ec is the coefficient of restitution ( ec = 1 in case of perfectly elastic particles), 
wi = vp1,i − vp2,i the relative velocity between the colliding particles, and ki the unit vector 
joining the colliding particle centres. Rotation of the particles is neglected, but can be eas-
ily accounted for.

2.4 � Deterministic Discrete Particle Simulation

In a deterministic discrete particle simulation (DPS), collisions are treated by evaluat-
ing the potential collision time between each pair of particles in the domain. Therefore, 
this approach is also commonly referred to as event-driven (Mallouppas and van Wachem 
2013). Once a minimum collision time has been established, all the particle positions are 
updated with this collision time. The particle positions are updated using a third order Tay-
lor expansion in time, and the velocities are computed using a second order Taylor expan-
sion in time,

where xn
p,i

 and vn
p,i

 are the position and velocity, respectively, of the particle p in the direc-
tion i at time level n, �t the timestep, and Fn

i
 the forces acting on the particle and its mass 

mp . In a LES–DPS simulation, the forces acting on each particle arise from the fluid drag 
forces. The interpolation of the fluid properties to the particles is performed with a third 
order polynomial interpolation (Mallouppas and van Wachem 2013).

Once the particles have been updated with the minimum collision time, two of the par-
ticles in the domain should be touching. The collision of the two touching particles is then 
handled with the model described in the previous section. In this algorithm, the collision 
time needs to be determined for each pair of particles, making it very expensive. Therefore, 
a stochastic collision model is very favourable.

2.5 � Fictitious Collision Particle

The inter-particle collisions in the hard-sphere model can be resolved deterministically or 
stochastically. A deterministic collision is found by comparing all pairs of particles in a 
domain, and determining if the pair of particles is separated by a distance which is the 
average diameter of the two particles. In a stochastic collision framework, the collision 
probability of each “real” particle in the domain is stochastically evaluated, and if appro-
priate, a fictitious particle, typically referred to as particle 2, is generated. Its position and 
velocity are subsequently determined from a stochastic model. A rejection-acceptance 
method is then used to determine whether the fictitious collision between the real and fic-
titious particles will occur or not. This is achieved by selecting a random number from a 
uniform distribution on [0,1]: a fictitious collision is executed if that random number is 
larger than the expected collision probability. If a collision should be executed, the gener-
ated random position of the fictitious particle follows the condition of uniform probability 
of finding the projected position, xp2,⟂ , on the plane (t1, t2) that is orthogonal to the relative 

(13)xn+1
p,i

= xn
p,i
+ vn

p,i
�t +

�t2

2

Fn
i

mp

+ O(�t3)

(14)vn+1
p,i

= vn
p,i
+ �t

Fn
i

mp

+ O(�t2)
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particle velocity w = vp1 − vp2 , as shown in Fig. 1. An example of a stochastic model to 
determine the position and velocity of the fictitious particle is the stochastic one particle 
(SOP) model.

2.5.1 � SOP Model

In the SOP model (Sommerfeld 2001), the fictitious particle velocity is estimated as

where � ∼ N(0, 1) is a Gaussian random number of mean zero and a standard deviation 
equal to unity, ⟨v2

p
⟩ = 2

3
q2
p
 is the mean square particle fluctuating velocity and q2

p
 is the parti-

cle kinetic energy. Rpp is the particle–particle velocity correlation of two colliding particles

To determine the particle–particle velocity correlation, there exist various models, such as 
the empirical formula proposed by Sommerfeld (2001), given as

where Stt is the turbulent Stokes number, defined as the ratio between, the particle response 
time, �p , and the Lagrangian integral time scale, TL.

3 � New CSOP Model

In this section, a new model taking into account the particle–particle velocity correlation and 
the particle-fluid velocity correlation upon the velocity of the fictitious particle is introduced. 
This section is structured as follows. After deriving the expression for the velocity of the ficti-
tious particle in the new correlated stochastic one particle (CSOP) model, Sect. 3.1 discusses 
how the position of the fictitious particle is determined. Section 3.2 discusses how to locally 

(15)vp2,i = Rppvp1,i +

�
⟨v2

p
⟩
�

1 − R2
pp

�

(16)Rpp ≡ ⟨vp1 (xp1 , t)vp2 (xp2 , t)⟩
3⟨v2

p
⟩

(17)Rpp = exp(−0.55 ⋅ St0.4
t
)

Fig. 1   Generation of the ficti-
tious particle position, xp2

p1

t2

n ≡− w
|w|

t1

w = vp1 − vp2

×
×
xp2

p2

×
xp2,⊥
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evaluate the collision probability and, subsequently, Sect. 3.3 discusses how the global colli-
sion probability is determined. Section 3.4 then compares the implications and implementa-
tion of the two approaches to determine the collision probability and compares the algorithms 
for this.

The SOP model, given by Eq. (15), is limited by the fact that the fictitious particle velocity, 
vp2 , is only correlated to the real particle velocity but not to the local fluid velocity. However, 
the motion of a particle in a flow is, depending on the particle and fluid properties, corre-
lated to the turbulent flow transporting it. Neglecting the covariance term, ⟨vf@p2,i

vp2,i⟩ , has 
been observed in previous work (Berlemont et al. 2001; Fede et al. 2015), and will lead to a 
decrease in particle kinetic energy when the flow statistics are stationary.

The idea of the new model, the correlated stochastic one particle (CSOP) model, is to 
extend Eq. (15) such that the fictitious particle velocity also depends on the local fluid veloc-
ity. Particles are assumed small enough, so that the stochastics of the fluid velocity as seen by 
both colliding particles is the same. The three variables which describe the problem, namely 
vp1 , vp2 and vf@p , form a tri-variate normal distribution. This assumption has been tested by 
analyzing the results of a deterministic LES–DPS simulation with a deterministic collision 
algorithm, and for the cases considered these variables are indeed described well by a Gauss-
ian function, as shown in Fig. 2.

A covariance matrix can be formulated, which is defined as

where ⟨v2
f
⟩(= ⟨v2

f@p
⟩) is the local fluid velocity variance, and �fp and �pp are the fluid-parti-

cle and particle–particle covariances, respectively taken as

(18)� =

⎡⎢⎢⎣

⟨v2
p
⟩ �fp �pp

�fp ⟨v2
f
⟩ �fp

�pp �fp ⟨v2
p
⟩

⎤⎥⎥⎦

(19)�fp ≡ 1

3
⟨vf@pvp1⟩ =

1

3
⟨vf@pvp2⟩

(20)�pp ≡ 1

3
⟨vp1vp2⟩

Fig. 2   Particle and fluid velocity 
distributions, normalized by the 
standard deviation and compared 
to a Gaussian distribution of 
mean zero and standard deviation 
one. The results are obtained 
from LES–DPS simulations, with 
particle density �p = 25 kg m−3 
( Stt = 0.79)
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from which the particle-fluid, Rfp , and particle–particle, Rpp , correlations are computed as

The covariance matrix is based on a one-dimensional formalism, i.e. each dimension is 
assumed independent and can hence be treated independently,

Hereafter, the dimension subscripts i, j are omitted for simplicity.
From the covariance matrix, a stochastic representation of the three variables can be evalu-

ated. A method to sample n random numbers from a multivariate normal distribution can be 
summarised as: 

1.	 Determine a matrix A such that AAT = � , where � is the covariance matrix;
2.	 Generate a vector z = (z1, ..., zn) with zi ∼ N(0, 1);
3.	 Compute the sampled random variable vector x as 

where �i = E(xi) is the mean of the variable.
When considering homogeneous isotropic turbulence, the mean of the three variables ( vp1,vp2
,vf@p ) is equal to zero. A convenient way to obtain A , is to apply a Cholesky decomposition of 
the covariance matrix, � , such that

where L is a lower triangular matrix. This decomposition can be found, because � is a 
symmetric matrix, and is also be positive semi-definite, because of the condition

Under the assumption of stationary homogeneous isotropic turbulence, the system to solve 
is

From the Cholesky decomposition of the 3x3 covariance matrix � , the lower triangular 
matrix is obtained as

(21)
Rfp =

�fp�
⟨v2

f
⟩⟨v2

p
⟩

(22)Rpp =
�pp

⟨v2
p
⟩

(23)⟨vf@p,ivp1,j⟩ = ⟨vf@p,ivp2,j⟩ = ⟨vp1,ivp2,j⟩ = 0 for i ≠ j

(24)x = � + Az

(25)� = LLT

(26)Rpp > 2R2
fp
− 1

(27)
⎛
⎜⎜⎝

vp1
vf@p

vp2

⎞
⎟⎟⎠
= L

⎛
⎜⎜⎝

z1
z2
z3

⎞⎟⎟⎠
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The positive semi-definite condition for � (Eq. 26) ensures that the numerators of the bot-
tom right element of L are roots of positive numbers. As vp1 and vf@p are known variables 
in the problem, z1 and z2 can be computed as

and the random fictitious particle velocity, vp2 , can be stochastically evaluated as

where z3 ∼ N(0, 1) . When the particle velocities are uncorrelated to the fluid velocity, i.e. 
Rfp = 0 , Eq. (15) of the SOP model is recovered.

3.1 � Fictitious Particle Position

The methodology for generating the fictitious particle position is rigorously developed hereaf-
ter, and follows a similar procedure as previous works (Sommerfeld 2001; Berlemont et al. 
2001). The methodology is sketched in Fig. 3. Because of the symmetry of collision between 
two particles, the projection of the impact point is uniform on the cross-sectional collision 
plane defined by the normal vector n = −

w

|w| , where w is the relative velocity between the two 
particles. Two uniform random numbers, � ∈ [0;1] and � ∈ [0;2�] , are chosen to generate the 
random position of the fictitious particle.

The coordinate system ( n, t1, t2 ) is obtained by first setting the normal vector in the oppo-
site direction of the relative velocity, n = −

w

|w| . The two tangential vectors, t1 and t2 , can be any 
chosen orthogonal vectors in the tangential plane, i.e. verifying n ⋅ t1 = n ⋅ t2 = t1 ⋅ t2 = 0 . 
For instance, the following pair verifies these conditions:

(28)L =

⎡
⎢⎢⎢⎢⎢⎣

�
⟨v2

p
⟩ 0 0�

⟨v2
f
⟩Rfp

�
⟨v2

f
⟩
�

1 − R2
fp

0

�
⟨v2

p
⟩Rpp

�
⟨v2

p
⟩Rfp−RppRfp√

1−R2
fp

�
⟨v2

p
⟩
√

1−2R2
fp
−R2

pp
+2R2

fp
Rpp√

1−R2
fp

⎤
⎥⎥⎥⎥⎥⎦

(29)

z1 =
vp1�
⟨v2

p
⟩

z2 =
1�

1 − R2
fp

⎛
⎜⎜⎜⎝

vf@p�
⟨v2

f
⟩
− Rfp

vp1�
⟨v2

p
⟩

⎞⎟⎟⎟⎠

(30)

vp2 =

�
Rpp −

R2
fp
(1 − Rpp)

1 − R2
fp

�
vp1 +

Rfp(1 − Rpp)

1 − R2
fp

����⟨v2
p
⟩

⟨v2
f
⟩vf@p

+

�
1 − 2R2

fp
− R2

pp
+ 2R2

fp
Rpp

�
1 − R2

fp

�
⟨v2

p
⟩z3

(31)t1 =
1

�t1�
⎡⎢⎢⎣

1.0

1.0

−
nx+ny

nz

⎤⎥⎥⎦
, t2 = n × t1
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In the new local coordinate system ( n, t1, t2 ), the coordinates of point xp2 , the center of the 
fictitious particle p2 , are defined as

where dp is the particle diameter and the two spherical coordinate angles, � and � , are 
expressed in terms of the random numbers � and � as

Finally, in the global coordinate system, the position of the fictitious particle is computed 
as

Figure 4 shows the results obtained from LES–DPS on the projection of various particle 
positions during a collision on the tangential plane (t1, t2) . The points are uniformly distrib-
uted on the plane, confirming the uniform condition applied for the stochastic generation of 
the fictitious particle position.

(32)

xn
p2
= dp cos� cos�

yt
1

p2
= dp cos� sin�

zt
2

p2
= dp sin�

(33)� = arctan

� √
� sin �√

1 − � sin2 �

�

(34)� = arctan

�
−
√
� cos �√
1 − �

�

(35)

xp2 = xp1 + dp ⋅
(
nx cos� cos� + t1

x
cos� sin� + t2

x
sin�

)

yp2 = yp1 + dp ⋅

(
ny cos� cos� + t1

y
cos� sin� + t2

y
sin�

)

zp2 = zp1 + dp ⋅
(
nz cos� cos� + t1

z
cos� sin� + t2

z
sin�

)

Fig. 3   Generation of the fictitious 
particle �� position (in blue). 
A spherical coordinate system 
( n, t1, t2 ) is build depending on 
the relative velocity between the 
two particles, w . Two uniform 
random numbers are generated, 
� ∈ [0;1] and � ∈ [0;2�] , which 
ensure the symmetry condition of 
the collision impact point, C  , i.e. 
uniformity on the cross-sectional 
plane, S

⟂
 . The angles � and � 

are derived as a function of � and 
� , and the position of �� is then 
computed. Note that the two par-
ticles are presented with different 
diameters for clarity

p1
L = dp

√
β

t1

n ≡ − w
|w|

t2

w = vp1 − vp2

×
C

×
xp2

p2

×
C⊥

S⊥

α

Φ

Ψ
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3.2 � Local Evaluation of the Collision Frequency

After a fictitious particle has been generated, the probability of the collision occurring 
between the real particle and the fictitious particle must be also determined. This proba-
bility is stochastically determined from the collision frequency. The collision frequency 
can be determined locally, around each real particle, or globally, for the whole system.

The local collision frequency can be directly determined from kinetic theory Lun 
et al. (1984), and it is computed for each real particle, p1 , as Sommerfeld (2001)

where np(xp1 ) is the local number of particles per volume, vp2 is the generated fictitious 
particle velocity, obtained from a stochastic model, and g0 is the radial distribution func-
tion at contact, which is always greater or equal to one and it is introduced to take into 
account particle clustering effect on the collision frequency (Sundaram and Collins 1997; 
Reade and Collins 2000). In the present work, the cases studied are considered dilute and 
the particles are inertial enough not to show a very strong clustering behaviour, hence we 
assume g0 = 1 (van Wachem et  al. 2001a). np(xp1 ) is evaluated by considering all direct 
neighbouring grid cells, and summing the number of particles divided by the considered 
volume, as shown in Fig. 5. However, to compute np(xp1 ) locally, the number of particles in 
the considered volume must be sufficiently large, in order to avoid a numerical preferential 
concentration effect, which tends to overestimate the collision frequency.

(36)fc(xp1 , vp1 − vp2 ) = g0�d
2
p
np(xp1 )|vp1 − vp2 |

Fig. 4   Projection of various par-
ticle positions on the tangential 
plane of collision, (t

1
, t
2
) , from 

LES–DPS simulations. The 
points are uniformly distributed 
across the plane

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

t1

t 2

Fig. 5   Evaluating the local 
number of particles per volume, 
np(xp1 ) around the particle p

1
 . 

The considered volume lies 
within the neighbouring grid 
cells (dotted lines) p1
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3.3 � Global Evaluation of the Collision Frequency

Many models for evaluating the average, or global, collision frequency have been 
derived for homogeneous isotropic turbulent two-phase flows. Following the formal-
ism of Chapman and Cowling (1990), from the particle velocity distribution function 
f (1)
p

(xp1 , vp1 ) , the probability for a particle p1 to be located in the volume dxp1 centred in 
xp1 , with a velocity in the range [cp1 , cp1 + dcp1 ] is given as

For the cases considered in the paper, the particle velocity distribution function, 
f (1)
p

(xp1 , vp1 ) , may be assumed Gaussian, so that

For the evaluation of binary collisions in mono-dispersed case, the probability of having 
two particles, p1 and p2 , located at xp1 and xp2 = xp1 + dpk , respectively, and with velocities 
within the range cp1 + dcp1 and cp2 + dcp2 , respectively, is computed as (Lun et al. 1984)

where f (2)
p

(xp1 , vp1 , xp2 , vp2 ) is the particle-pair velocity distribution function and 
crel = cp1 − cp2 is the relative velocity between the two particles. Using the isotropy condi-
tion, the average collision frequency, fc , is then derived as (Lavieville et al. 1995; Pigeon-
neau 1998)

where np the average number of particles per unit volume in the whole domain and g0 is the 
radial distribution function and is assumed to be equal to one. In case of very inertial par-
ticles ( Stt ≫ 1 ), the velocities of colliding particles are independent, such that, from chaos 
theory, one obtains

Integrating Eq.  (41) in Eq.  (40), the collision frequency is recovered as by Abrahamson 
(1975)

Lavieville et  al. (1995) have developed an extended model for f (2)
p

(cp1 , cp2 ) , which takes 
into account the correlation between the colliding particle velocities and the fluid veloc-
ity as seen by the particles. They assumed that particles are small enough so that the fluid 
velocity as seen by the two colliding particles is equal, and the conditional fluid veloc-
ity distribution function is also Gaussian. The correlated particle-pair velocity distribution 
function can then be expressed as

(37)f (1)
p

(xp1 , vp1 )dxp1dcp1

(38)f (1)
p

(xp1 , cp1 ) =
1

(2�⟨v2
p
⟩) 3

2

e
−

cp1

2⟨v2p⟩

(39)f (2)
p

(xp1 , vp1 , xp1 + dpk, vp2 )d
2
p
(crel ⋅ k) dk dxp1 , dcp1 dcp2

(40)fc = g0�d
2
p
np ∫

∞

−∞
∫

∞

−∞

|crel|f (2)p
dcp1 dcp2

(41)f (2)
p

(cp1 , cp2 ) ≈ f (1)
p

(cp1 )f
(1)
p

(cp2 )

(42)fc = 4
√
�d2

p
np

�
⟨v2

p
⟩
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where the constants C2 and C12 are given as

Integrating Eq. (43) in Eq. (40) leads to the derivation of a correlated expression for the 
collision frequency and is given as

which is the global expression for the collision frequency.

3.4 � Algorithm Comparison

In both the local and global algorithms, the probability of two particles colliding, Pcoll , is 
computed as (Oesterle and Petitjean 1993)

where �t is the timestep, and fc is the collision frequency. In practice, the timestep is 
typically taken as the same timestep as used to solve the fluid, as long as the condition 
𝛥t < 𝜏c∕10 is met (Berlemont et al. 2001), with �c = 1∕fc the collision time. Often, a first 
order approximation of Eq.  (46) is found in papers Berlemont et al. (2001), Sommerfeld 
(2001), and reads as Pcoll ≈ fc�t . A rejection-acceptance method is applied to determine 
whether a collision will occur or not. This is achieved by generating a uniform random 
number, � , between 0 and 1. If this number is smaller than the collision probability Pcoll , 
then a collision between the two particles is executed.

The two algorithms are summarised below. The global frequency algorithm (GFA) is inde-
pendent of any individual particle property, i.e. all potential colliding partners have the same 
probability of collision. On the other hand, with the local frequency algorithm (LFA) the colli-
sion probability is directly proportional to the relative velocity between the real and generated 
fictitious particle. High relative velocity of potential colliding partners, hence, have a larger 
probability to collide. The LFA can also capture preferential concentration through the local 
evaluation of np , and it is applicable outside of stationary homogeneous turbulence flows.

(43)f (2)
p

(cp1 , cp2 ) =
1

(2�⟨v2
p
⟩)3(1 − R4

fp
)
3

2

exp
�
−C2c

2
p1
− C2c

2
p2
+ C12cp1 ⋅ cp2

�

(44)C2 =
1

2⟨v2
p
⟩(1 − R4

fp
)
, C12 =

R2
fp

⟨v2
p
⟩(1 − R4

fp
)

(45)fc = 4
√
�d2

p
np

�
⟨v2

p
⟩
�

1 − R2
fp

(46)Pcoll = 1 − exp (−fc�t)

Algorithm 1 Local fc (Sommer-
feld 2001; Sungkorn et al. 2011)
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4 � Results and Discussion

To validate the working of the newly proposed model for the stochastic inter-particle colli-
sion model, LES of stationary homogeneous isotropic turbulence are performed in a peri-
odic cubic box of length Lbox = 0.128 m with 643 grid cells, laden with particles. The flow 
parameters follow the configuration set in the numerical work of Deutsch and Simonin 
(1991) on two-fluid model LES. The fluid density, �f  , and dynamic viscosity, �f  , are 1.17 
kg m−3 and 1.72⋅10−5 Pa s, respectively. The forcing scheme of Mallouppas et al. (2013) is 
applied to sustain the turbulence kinetic energy, q2

f
 , which is fixed at 0.135 m2s−2 . Addi-

tional parameters of the forcing scheme can be found in Table 1. The Smagorinsky con-
stant is set to be CS = 0.12.

The particle parameters are taken from Lavieville et  al. (1995) and four different test 
cases are considered in this paper, which are summarised in Table 2. Particles are consid-
ered spherical, with a diameter of dp = 6.56 ⋅ 10−4 m, and collisions are assumed purely 
elastic. The particle mean response time, �F

fp
= ⟨1∕�p⟩−1 , the fluid Lagrangian integral time 

scale as seen by the particle, defined as � t
f@p

= ∫ ∞

0

vf@p(t+t0)vf@p(t0)

2q2
f@p

dt , and the fluid-particle 

correlation velocity, Rfp , have been determined from the deterministic LES–DPS simula-
tions. If the flow under consideration is statistically homogeneous, such as in homogeneous 
isotropic turbulence, Rfp is constant in the whole domain. However, if the flow is statisti-
cally steady in time but not in space, Rfp varies in space and can be determined by locally 
sampling the particle and fluid velocity. If the statistics of the flow are changing tempo-
rally, the local values of Rfp should also change in time, and a transport equation for this 
correlation will have to be solved (Simonin et al. 1993). The turbulent Stokes number val-
ues, Stt , have been taken from the corresponding particles from the work of Sommerfeld 
(2001), in order to match the empirical model for the particle–particle correlation (Eq. 17). 

Algorithm 2 Global fc (Berlem-
ont et al. 2001; Chagras 2004; 
Moissette 2001)

Table 1   Turbulent flow 
parameters

Parameter Symbol Value

Taylor Reynolds number Re
�
 (–) 40.5

Turbulent Reynolds number ReL (–) 150
Minimum triggered wave number �

min
 (m−1) 170

Maximum triggered wave number �
max

 (m−1) 550
Eulerian integral time scale TE (s) 0.026
Kolmogorov time scale �

�
 (s) 0.0157
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For the cases with inertial particles (Case III and Case IV), the number of particle per vol-
ume, np , is determined globally with the local frequency algorithm.

The timestep of the fluid integration is �tf = 6.75 ⋅ 10−4 s. For the stochastic collision 
models, sub-timesteps are performed on the frozen field for the particle transport and col-
lisions. The particle integration timestep is taken as �tp = �tf∕10 , and the particle trajec-
tories and velocities are integrated using the Verlet algorithm (Allen and Tildesley 1989). 
Collision statistics are collected after a time of 10TE ≃ 0.25 s.

Figure 6 compares the CPU time per iteration for the deterministic LES–DPS and the 
stochastic LES–CSOP simulations. It is noted that the computational effort associated with 
the CSOP model is about 10% more than that of the SOP model. two orders of magni-
tude faster, and the computational effort does not increase at the same rate with regard 
to the number of particles in the simulation domain. The results stress the advantages 
of a stochastic collision model for modelling of large-scale flows in the Euler–Lagrange 
framework.

4.1 � Fluid‑Particle Velocity Covariance Loss

During a perfectly elastic instantaneous collision, the sum of the fluid-particle covariances 
of the two particles is conserved, such that

In the SOP model, the last term of the RHS of Eq. (47) does not converge to the correct 
value, but to a lower value, as the fluid-particle velocity correlation is not directly taken 
into account during the generation of the fictitious particle velocity. The post-collisional 
fluid-particle correlation of the real particle, and ⟨vnew

p1
vf@p⟩ will then decrease. Under the 

assumption that the fluid velocity as seen by two colliding particles is the same, the trans-
port equation for the fluid-particle velocity covariance, qfp = ⟨vpvf@p⟩ , is derived as (Fede 
et al. 2015)

(47)⟨vnew
p1

vf@p⟩ + ⟨vnew
p2

vf@p⟩ = ⟨vp1vf@p⟩ + ⟨vp2vf@p⟩

Fig. 6   Computational time per 
iteration for the deterministic 
LES–DPS and the novel stochas-
tic LES–CSOP model
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which yields a theoretical expression for the fluid-particle velocity covariance normalized 
by the fluid kinetic energy as seen by the particle, as

where �r = �
t
f@p

∕�F
fp

 is the inverse Stokes number. Figure 7 shows the results of Eq. (49) 
compared to the simulation results obtained by the deterministic and two stochastic 
approaches using the global frequency algorithm, as a function of the inverse Stokes num-
ber, �r . The deterministic LES–DPS results accurately fit the theoretical prediction given 
by Eq.  (49). The fluid-particle covariance loss is clearly seen when applying the SOP 
model. Because of the higher volume fraction, Case I and Case II (large �r ) experience a 
higher loss in the covariance. The CSOP model, on the other hand, accurately follows the 
LES–DPS and theoretical results. As the inverse Stokes number increases (the particles 
become lighter), there seems to be a slight overprediction of the fluid-particle covariance. 
This may be due to the assumption of g0 = 1 , or because of the finite size of the particles.

Figure  8 shows the real and fictitious particle-fluid relative velocity distribution, 
|vp1 − vf@p| (continuous lines) and |vp2 − vf@p| (dashed lines), respectively, for each of 
the four simulated cases. The results of the stochastic SOP and CSOP models are com-
pared to the results of the deterministic LES–DPS simulations. The CSOP model pre-
sents a good prediction of the real particle-fluid relative velocity, whereas the SOP tends 
to overestimate |vp1 − vf@p| , especially for the less inertial particles (Cases I and II). 
Moreover, the SOP model significantly overestimates the fictitious particle-fluid relative 
velocity, which highlights the decorrelation between the two variables vp2 and vf@p . In 
the case of the CSOP model, the real and fictitious particle-fluid relative velocity dis-
tribution are equal for the larger inertial particle (Case III and IV), which confirms the 
assumption that the fluid velocity as seen by the particle is the same for both colliding 
particles.

(48)
dqfp

dt
= 0 =

2q2
f@p

− qfp

�
F
fp

−
qfp

�
t
f@p

(49)
qfp

2q2
f@p

=
�r

1 + �r

Fig. 7   Fluid-particle velocity 
covariance, qfp , normalized by 
the fluid kinetic energy seen by 
the particles, qf@p , as a function 
of the inverse Stokes number �r . 
The black-filled symbols corre-
spond to the deterministic LES–
DPS simulations, the grey-filled 
symbols to the CSOP model 
simulations, and the empty ones 
to the SOP model simulations. 
The black line corresponds to 
the theoretical expression of the 
velocity covariances given in 
Eq. (49)
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4.2 � Particle Kinetic Energy

Assuming perfectly elastic collisions, the particle kinetic equation for the particles in a box 
of statistically steady turbulence can be expressed as (Fede et al. 2015)

Hence, a loss in the velocity covariance, qfp , will lead to a loss in the total particle kinetic 
energy. Figure  9 shows the time evolution of the particle kinetic energy for each simu-
lated case. For the stochastic models, no collisions are considered in the first 100 timesteps. 
After 100 timesteps, corresponding to a time of t = 0.0675 s, the stochastic collision algo-
rithm is enabled. The results predicted by the CSOP model show that the particle kinetic 
energy is conserved, and reaches the same values as obtained from the deterministic 

(50)
dq2

p

dt
=

qfp − 2q2
p

�
F
fp

= 0
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Fig. 8   Fluid-particle relative velocity distributions of colliding particles. The continuous lines correspond 
to the relative velocity between the real particle and the fluid velocity seen, and the dashed ones to the rela-
tive velocity between the fictitious particle and the same fluid velocity seen. The SOP and CSOP results are 
compared to LES–DPS
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LES–DPS for the four simulated cases. With the SOP model, the particle kinetic energy 
indeed decreases, which is non-physical.

4.3 � Particle–Particle Correlation Model

All stochastic models require an empirical model to compute the particle–particle correla-
tion, Rpp , such as Eq. (17). Using the form of the particle-pair velocity distribution function 
in Eq. (43), the particle–particle correlation, Rpp can be expressed as

Zaichik et al. (2003) developed a model for the particle–particle correlation, which reads as

(51)Rpp =
1

3⟨v2
p
⟩ ∫

∞

−∞

(vp1vp2 )f
(2)
p

dvp1dvp2 = R2
fp

(52)Rpp = f (dp)fu
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Fig. 9   Time evolution of the particle kinetic energy, q2
p
 , for the LES–DPS, SOP and CSOP models. In the 

stochastic models, collisions are taken into account after a 100 timesteps ( t = 0.0675 s)
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where f (dp) is the longitudinal auto-correlation coefficient, which, in case of small parti-
cles ( dp ≪ 𝜆 ), is equal to one, and fu is the response coefficient, given as

where �T is the Taylor time scale. Following the models proposed by Zaichik et al. (2003), 
for the cases considered in this paper, z is equal to 0.4.

Figure 10 shows the particle–particle correlation as a function of the turbulent Stokes 
number. The two analytical models given in Eqs. (51) and (52), and the empirical model of 
Sommerfeld (2001) are compared to the results obtained with the deterministic LES–DPS 
simulations. The model of Zaichik et al. (2003) underestimates the particle–particle corre-
lation for Stt > 1 , whereas the empirical model of Sommerfeld (2001) shows good predic-
tion with regard to the results from LES–DPS, except for the high Stokes number case. The 
analytical model obtained from the particle-pair velocity distribution function (Eq. 51) also 
shows a good prediction of the particle–particle correlation. Assuming such a model, the 
generation of the fictitious particle velocity, Eq. (30), can be simplified to

The fictitious particle velocity is not directly correlated to the real particle velocity, and 
only one parameter, namely Rfp , requires modelling.

4.4 � Particle Relative Velocity Distribution

With the local frequency algorithm (LFA), the probability for a particle to collide with 
its fictitious partner is directly proportional to the norm of their relative velocity, 
|w| = |vp1 − vp2 | . With the global frequency algorithm (GFA), the average relative velocity 
of colliding particles, ⟨�w�⟩ , in homogeneous isotropic turbulence has been modelled and 
is used to compute the collision frequency. Figure 11 shows the distribution of the rela-
tive velocity, w , obtained with the LFA and GFA, and compared to LES–DPS results. In 

(53)fu =
2Stt + z2

2Stt + 2St2t + z2
, z =

�T

TL

(54)vp2 = Rfp
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Fig. 10   The particle–particle cor-
relation Rpp as a function of the 
turbulent Stokes number, Stt . The 
models of Zaichik et al. (2003) 
and Sommerfeld (2001) are com-
pared to results obtained from the 
deterministic LES–DPS
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all cases, the relative velocity obtained from the LFA is larger than the one obtained with 
the GFA, which is in better agreement with the LES–DPS results. As expected, the local 
evaluation of the collision frequency tends to prevent particles with small relative velocity 
to collide, as the probability of collision, Pcoll , tends to zero.

For inertial particle (Case III and Case IV), the GFA predicts relative velocity distribu-
tions similar to the ones obtained from LES–DPS. However, for less inertial particles (Case 
I and Case II), the GFA tends to overestimate the relative velocity. In the CSOP model, the 
fluid-particle velocity correlation, Rfp , is computed for all particles in the domain, which is 
assumed to be equal to the fluid-particle velocity correlation of all colliding particles, Rcoll

fp
 . 

However, the fluid-colliding particle velocity correlation is smaller than the fluid-particle 
velocity correlation of all particles, as shown in Table 3 from LES–DPS results. This leads 
to an overestimation of the fluid-particle velocity covariance, qfp , and, in turn, the particle 
kinetic energy increases. As the average of the square of the relative velocity, ⟨�w2�⟩ , is pro-
portional to the particle kinetic energy, q2

p
 , an overestimation of the relative velocity is seen 

with the GFA compared to the results of the LES–DPS.
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Fig. 11   Relative velocity distribution of colliding particles, |w| = |vp1 − vp2 | . The local and global fre-
quency algorithm results are compared to LES–DPS
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Another explanation for the overestimation of the relative velocity distribution obtained 
with the stochastic models comes from preferential concentration of particles (Reade and 
Collins 2000). Less inertial particles (Case I and Case II) are more likely to follow similar 
vortical structures (Wicker and Eaton 2001; Goto and Vassilicos 2008), thus the relative 
velocity of particles confined in clusters is expected to be smaller.

4.5 � Particle–Particle Collision Angle Distribution

Berlemont et al. (2001) have tried to overcome the spurious particle kinetic energy loss in 
their Lagrangian particle tracking framework, by artificially modifying the fluid velocity 
as seen by the particle after the collision, in order to ensure the conservation of the fluid-
particle covariance. However, they note that this method leads to an identical distribution 
of the collision angle regardless of the particle density, which is unrealistic.

The CSOP model accurately captures the collision angle as a function of the particle 
density, in the same way the SOP model does (Sommerfeld 2001). Figure 12 shows the 
results of the particle–particle collision angle for each cases, and compares the LFA and 
GFA results with LES–DPS. Inertial particles collide more randomly, as the mean collision 
angle approaches �∕2 . As less inertial particles are more likely to follow the flow field, 
they collide with an angle close to zero.

The GFA is more accurate with regard to the LES–DPS results, but tends to predict 
higher values of the collision angle for Case I and Case II. The colliding angle of less iner-
tial particles is expected to be reduced as they accumulate in cluster regions which explains 
the overestimation observed with the GFA. In the same way as for the relative velocity dis-
tribution, the LFA tends to prevent collisions with a small collision angle ( � ∼ 0 ) to occur, 
which leads eventually to the overestimation of the collision angle distribution.

4.6 � Collision Frequency Comparison

A theoretical prediction of the collision frequency is obtained by integrating Eqs. (49) and 
(50) into Eq. (45) such that

If the particle velocity is considered uncorrelated to the fluid velocity, i.e. Rfp = 0 , the nor-
malized collision frequency reads as

(55)
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Table 3   LES–DPS results of 
fluid-particle correlation anf 
fluid-particle correlation of 
colliding particles

Case I Case II Case III Case IV

Fluid-particle veloc-
ity correlation Rfp

0.82 0.74 0.61 0.46

Fluid-colliding 
particle velocity 
correlation Rcoll

fp

0.77 0.69 0.56 0.42
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Figure 13 shows the normalized collision frequency obtained with the GFA and LFA and 
compares them to LES–DPS results. As expected, the GFA results are in accordance with 
the theoretical curve of the correlated collision frequency, Eq. (55), as the global collision 
frequency is derived from the same equations. For the cases with inertial particles (Case III 
and Case IV), the number of particles per volume, np , is determined globally in both algo-
rithms. Moreover for these cases, the computed normalized collision frequency is larger 
with the LFA and GFA than with the LES–DPS.

Although the LES–DPS and GFA results are in good agreement for Case II, there is a 
major divergence occurring for Case I. The GFA predicts a decreasing normalized colli-
sion frequency with increasing inverse Stokes number, �r , for 𝜂r > 1 . However, the opposite 
is observed with the LES–DPS results. This is an effect of preferential concentration, as 
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quency algorithm results are compared to LES–DPS
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particles gathered in clusters tends to collide more often (Reade and Collins 2000), which 
is not captured by the theory behind the GFA. The LFA, on the other hand, shows a good 
prediction trend. Although the normalized collision frequency is overestimated in Case II, 
the normalized collision frequency computed in Case I is evaluated larger than in Case II. 
Preferential concentration effects are partly captured by the local evaluation of np , although 
its accuracy is debatable as the LFA still over-evaluates the normalized collision frequency 
compared to LES–DPS.

Results such as the relative velocity and the collision angle distribution are determined 
more accurately with the GFA, but the LFA has the advantage of being applicable for any 
type of turbulent gas-solid flow, without analytical solutions or a priori knowledge of the 
collision frequency. A major feature to develop would be to integrate the effect of the cor-
related motion of the particles in the derivation of the collision frequency in the LFA. 
For instance, in their Monte–Carlo method, Fede et al. (2015) approximate the fluid and 
particle velocity probability density distributions into linear combinations of Dirac func-
tion which enables them to derive a correlated expression of the probability of collision 
between parcels of particles.

5 � Conclusions

This paper presents a novel correlated stochastic model for particle collisions in the frame-
work of Euler–Lagrange turbulent gas-solid flows. The correlated model ensures that the 
velocity of the fictitious particle is correctly correlated to both the real colliding particle 
velocity and to the local fluid velocity as seen by the particle. This prevents an unrealis-
tic decorrelation between the particle and fluid velocity. Simulations of a particle-laden 
flow of stationary homogeneous isotropic turbulence are conducted, using the new model, 
and comparing its results with an existing stochastic model and a deterministic discrete 
particle model. The simulations are carried out with varying particle Stokes number 
Stt = [0.75 − 6.0] and particle volume fractions �p = [0.014 − 0.044] . The results show 
that the simulations using the stochastic model are orders of magnitude less computational 
expensive as the deterministic collision model, whilst the physical predictions are very 
close to the deterministic model. The prediction of the fluid-particle velocity correlation 

Fig. 13   Square of the collision 
frequency, f 2

c
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and the particle kinetic energy variation in time, is much more accurate compared to other 
stochastic collision models.

This paper also studies the effect of the model to determine the probability of a colli-
sion occurring, and two algorithms to compute this probability are compared. Under the 
assumption of homogeneous and isotropic turbulence, the global algorithm computes a 
unique collision frequency that applies to all particle collisions, and depends only on aver-
aged variables, such as the average particle kinetic energy. With the local algorithm, the 
collision frequency is proportional to the local relative velocity between the real and the 
fictitious particle, and varies for each collision event. Although the global algorithm shows 
slightly better predictions for the colliding particle relative velocity and collision angle dis-
tributions in a stationary homogeneous isotropic turbulence flow, it is only applicable if 
there is either an analytical model or an a priori knowledge of the collision frequency. On 
the other hand, the local frequency algorithm is much more flexible and can be applied for 
any given flow condition.
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