Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/62608
Titel: Solving mixed-integer nonlinear optimization problems using simultaneous convexification : a case study for gas networks
Autor(en): Liers, Frauke
Martin, Alexander
Merkert, Maximilian
Mertens, Nick
Michaels, Dennis
Erscheinungsdatum: 2021
Art: Artikel
Sprache: Englisch
URN: urn:nbn:de:gbv:ma9:1-1981185920-645597
Schlagwörter: Mixed-integer nonlinear programming
Simultaneous convexification
Convex envelope
Gas network optimization
Zusammenfassung: Solving mixed-integer nonlinear optimization problems (MINLPs) to global optimality is extremely challenging. An important step for enabling their solution consists in the design of convex relaxations of the feasible set. Known solution approaches based on spatial branch-and-bound become more effective the tighter the used relaxations are. Relaxations are commonly established by convex underestimators, where each constraint function is considered separately. Instead, a considerably tighter relaxation can be found via so-called simultaneous convexification, where convex underestimators are derived for more than one constraint function at a time. In this work, we present a global solution approach for solving mixed-integer nonlinear problems that uses simultaneous convexification. We introduce a separation method that relies on determining the convex envelope of linear combinations of the constraint functions and on solving a nonsmooth convex problem. In particular, we apply the method to quadratic absolute value functions and derive their convex envelopes. The practicality of the proposed solution approach is demonstrated on several test instances from gas network optimization, where the method outperforms standard approaches that use separate convex relaxations.
URI: https://opendata.uni-halle.de//handle/1981185920/64559
http://dx.doi.org/10.25673/62608
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Sponsor/Geldgeber: Projekt DEAL 2020
Journal Titel: Journal of global optimization
Verlag: Springer Science + Business Media B.V
Verlagsort: Dordrecht [u.a.]
Band: 80
Heft: 2
Originalveröffentlichung: 10.1007/s10898-020-00974-0
Seitenanfang: 307
Seitenende: 340
Enthalten in den Sammlungen:Fakultät für Mathematik (OA)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Liers et al._Solving_2021.pdfZweitveröffentlichung842.42 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen