Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/62608
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiers, Frauke-
dc.contributor.authorMartin, Alexander-
dc.contributor.authorMerkert, Maximilian-
dc.contributor.authorMertens, Nick-
dc.contributor.authorMichaels, Dennis-
dc.date.accessioned2022-02-03T12:45:30Z-
dc.date.available2022-02-03T12:45:30Z-
dc.date.issued2021-
dc.date.submitted2021-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/64559-
dc.identifier.urihttp://dx.doi.org/10.25673/62608-
dc.description.abstractSolving mixed-integer nonlinear optimization problems (MINLPs) to global optimality is extremely challenging. An important step for enabling their solution consists in the design of convex relaxations of the feasible set. Known solution approaches based on spatial branch-and-bound become more effective the tighter the used relaxations are. Relaxations are commonly established by convex underestimators, where each constraint function is considered separately. Instead, a considerably tighter relaxation can be found via so-called simultaneous convexification, where convex underestimators are derived for more than one constraint function at a time. In this work, we present a global solution approach for solving mixed-integer nonlinear problems that uses simultaneous convexification. We introduce a separation method that relies on determining the convex envelope of linear combinations of the constraint functions and on solving a nonsmooth convex problem. In particular, we apply the method to quadratic absolute value functions and derive their convex envelopes. The practicality of the proposed solution approach is demonstrated on several test instances from gas network optimization, where the method outperforms standard approaches that use separate convex relaxations.eng
dc.description.sponsorshipProjekt DEAL 2020-
dc.language.isoeng-
dc.relation.ispartofhttp://link.springer.com/journal/10898-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectMixed-integer nonlinear programmingeng
dc.subjectSimultaneous convexificationeng
dc.subjectConvex envelope-
dc.subjectGas network optimization-
dc.subject.ddc510.72-
dc.titleSolving mixed-integer nonlinear optimization problems using simultaneous convexification : a case study for gas networksger
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-645597-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleJournal of global optimization-
local.bibliographicCitation.volume80-
local.bibliographicCitation.issue2-
local.bibliographicCitation.pagestart307-
local.bibliographicCitation.pageend340-
local.bibliographicCitation.publishernameSpringer Science + Business Media B.V-
local.bibliographicCitation.publisherplaceDordrecht [u.a.]-
local.bibliographicCitation.doi10.1007/s10898-020-00974-0-
local.openaccesstrue-
dc.identifier.ppn1786215187-
local.bibliographicCitation.year2021-
cbs.sru.importDate2022-02-03T12:41:26Z-
local.bibliographicCitationEnthalten in Journal of global optimization - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1991-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Mathematik (OA)

Files in This Item:
File Description SizeFormat 
Liers et al._Solving_2021.pdfZweitveröffentlichung842.42 kBAdobe PDFThumbnail
View/Open