Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/60246
Titel: The mixed degree of families of lattice polytopes
Autor(en): Nill, Benjamin
Erscheinungsdatum: 2020
Art: Artikel
Sprache: Englisch
URN: urn:nbn:de:gbv:ma9:1-1981185920-621971
Schlagwörter: Mixed degree
Mixed volume
Ehrhart polynomials
Lattice polytopes
Zusammenfassung: The degree of a lattice polytope is a notion in Ehrhart theory that was studied quite intensively over previous years. It is well known that a lattice polytope has normalized volume one if and only if its degree is zero. Recently, Esterov and Gusev gave a complete classification result for families of n lattice polytopes in Rn whose mixed volume equals one. Here, we give a reformulation of their result involving the novel notion of mixed degree that generalizes the degree similar to how the mixed volume generalizes the volume. We discuss and motivate this terminology, also from an algebro-geometric viewpoint, and explain why it extends a previous definition of Soprunov. We also remark how a recent combinatorial result due to Bihan solves a related problem posed by Soprunov.
URI: https://opendata.uni-halle.de//handle/1981185920/62197
http://dx.doi.org/10.25673/60246
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Sponsor/Geldgeber: Projekt DEAL 2020
Journal Titel: Annals of combinatorics
Verlag: [Springer International Publishing AG]
Verlagsort: [Cham (ZG)]
Band: 24
Originalveröffentlichung: 10.1007/s00026-019-00490-3
Seitenanfang: 203
Seitenende: 216
Enthalten in den Sammlungen:Fakultät für Mathematik (OA)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Nill_Benjamin_The mixed degree_2021.pdfZweitveröffentlichung290.6 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen