Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/60246
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNill, Benjamin-
dc.date.accessioned2022-01-26T11:11:16Z-
dc.date.available2022-01-26T11:11:16Z-
dc.date.issued2020-
dc.date.submitted2020-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/62197-
dc.identifier.urihttp://dx.doi.org/10.25673/60246-
dc.description.abstractThe degree of a lattice polytope is a notion in Ehrhart theory that was studied quite intensively over previous years. It is well known that a lattice polytope has normalized volume one if and only if its degree is zero. Recently, Esterov and Gusev gave a complete classification result for families of n lattice polytopes in Rn whose mixed volume equals one. Here, we give a reformulation of their result involving the novel notion of mixed degree that generalizes the degree similar to how the mixed volume generalizes the volume. We discuss and motivate this terminology, also from an algebro-geometric viewpoint, and explain why it extends a previous definition of Soprunov. We also remark how a recent combinatorial result due to Bihan solves a related problem posed by Soprunov.eng
dc.description.sponsorshipProjekt DEAL 2020-
dc.language.isoeng-
dc.relation.ispartofhttp://link.springer.com/journal/26-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectMixed degreeeng
dc.subjectMixed volumeeng
dc.subjectEhrhart polynomialseng
dc.subjectLattice polytopeseng
dc.subject.ddc510.72-
dc.titleThe mixed degree of families of lattice polytopeseng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-621971-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleAnnals of combinatorics-
local.bibliographicCitation.volume24-
local.bibliographicCitation.pagestart203-
local.bibliographicCitation.pageend216-
local.bibliographicCitation.publishername[Springer International Publishing AG]-
local.bibliographicCitation.publisherplace[Cham (ZG)]-
local.bibliographicCitation.doi10.1007/s00026-019-00490-3-
local.openaccesstrue-
dc.identifier.ppn1741587751-
local.bibliographicCitation.year2020-
cbs.sru.importDate2022-01-26T11:07:21Z-
local.bibliographicCitationEnthalten in Annals of combinatorics - [Cham (ZG)] : [Springer International Publishing AG], 1997-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Mathematik (OA)

Files in This Item:
File Description SizeFormat 
Nill_Benjamin_The mixed degree_2021.pdfZweitveröffentlichung290.6 kBAdobe PDFThumbnail
View/Open