Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/34933
Titel: A feedback optimal control algorithm with optimal measurement time points
Autor(en): Jost, FelixIn der Gemeinsamen Normdatei der DNB nachschlagen
Sager, SebastianIn der Gemeinsamen Normdatei der DNB nachschlagen
Le, Thuy Thi-Thien
Erscheinungsdatum: 2020
Umfang: 1 Online-Ressource (10 Seiten, 461,54 kB)
Art: Artikel
Sprache: Englisch
Herausgeber: MDPI, Basel
URN: urn:nbn:de:gbv:ma9:1-1981185920-351336
Schlagwörter: Feedback optimal control algorithm
Optimal experimental design
Pontryagin’s Maximum Principle
Zusammenfassung: Nonlinear model predictive control has been established as a powerful methodology to provide feedback for dynamic processes over the last decades. In practice it is usually combined with parameter and state estimation techniques, which allows to cope with uncertainty on many levels. To reduce the uncertainty it has also been suggested to include optimal experimental design into the sequential process of estimation and control calculation. Most of the focus so far was on dual control approaches, i.e., on using the controls to simultaneously excite the system dynamics (learning) as well as minimizing a given objective (performing). We propose a new algorithm, which sequentially solves robust optimal control, optimal experimental design, state and parameter estimation problems. Thus, we decouple the control and the experimental design problems. This has the advantages that we can analyze the impact of measurement timing (sampling) independently, and is practically relevant for applications with either an ethical limitation on system excitation (e.g., chemotherapy treatment) or the need for fast feedback. The algorithm shows promising results with a 36% reduction of parameter uncertainties for the Lotka-Volterra fishing benchmark example.
URI: https://opendata.uni-halle.de//handle/1981185920/35133
http://dx.doi.org/10.25673/34933
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: Processes
Verlag: MDPI
Verlagsort: Basel, Switzerland
Band: 5
Heft: 1
Originalveröffentlichung: 10.3390/pr5010010
Seitenanfang: 1
Seitenende: 19
Enthalten in den Sammlungen:Fakultät für Mathematik (OA)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Sager _et al_processes-05-00010-2020.pdfZweitveröffentlichung461.54 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen