Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/34933
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJost, Felix-
dc.contributor.authorSager, Sebastian-
dc.contributor.authorLe, Thuy Thi-Thien-
dc.date.accessioned2020-11-05T09:13:44Z-
dc.date.available2020-11-05T09:13:44Z-
dc.date.issued2020-
dc.date.submitted2017-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/35133-
dc.identifier.urihttp://dx.doi.org/10.25673/34933-
dc.description.abstractNonlinear model predictive control has been established as a powerful methodology to provide feedback for dynamic processes over the last decades. In practice it is usually combined with parameter and state estimation techniques, which allows to cope with uncertainty on many levels. To reduce the uncertainty it has also been suggested to include optimal experimental design into the sequential process of estimation and control calculation. Most of the focus so far was on dual control approaches, i.e., on using the controls to simultaneously excite the system dynamics (learning) as well as minimizing a given objective (performing). We propose a new algorithm, which sequentially solves robust optimal control, optimal experimental design, state and parameter estimation problems. Thus, we decouple the control and the experimental design problems. This has the advantages that we can analyze the impact of measurement timing (sampling) independently, and is practically relevant for applications with either an ethical limitation on system excitation (e.g., chemotherapy treatment) or the need for fast feedback. The algorithm shows promising results with a 36% reduction of parameter uncertainties for the Lotka-Volterra fishing benchmark example.eng
dc.format.extent1 Online-Ressource (10 Seiten, 461,54 kB)-
dc.language.isoeng-
dc.publisherMDPI, Basel-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectFeedback optimal control algorithmeng
dc.subjectOptimal experimental designeng
dc.subjectPontryagin’s Maximum Principleeng
dc.subject.ddc519.6-
dc.titleA feedback optimal control algorithm with optimal measurement time pointseng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-351336-
dc.relation.referenceshttp://www.mdpi.com/journal/processes-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleProcesses-
local.bibliographicCitation.volume5-
local.bibliographicCitation.issue1-
local.bibliographicCitation.pagestart1-
local.bibliographicCitation.pageend19-
local.bibliographicCitation.publishernameMDPI-
local.bibliographicCitation.publisherplaceBasel, Switzerland-
local.bibliographicCitation.doi10.3390/pr5010010-
local.openaccesstrue-
dc.identifier.ppn1737955032-
local.publication.countryXA-CH-
cbs.sru.importDate2020-11-05T08:41:07Z-
local.bibliographicCitationSonderdruck aus Processes-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Mathematik (OA)

Files in This Item:
File Description SizeFormat 
Sager _et al_processes-05-00010-2020.pdfZweitveröffentlichung461.54 kBAdobe PDFThumbnail
View/Open