Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/117127
Titel: Infinitesimal and infinite numbers in applied mathematics
Autor(en): Bryzgalov, Aleksandr
Islami, Kevin
Giordano, PaoloIn der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2024
Art: Artikel
Sprache: Englisch
Zusammenfassung: The need to describe abrupt changes or response of nonlinear systems to impulsive stimuli is ubiquitous in applications. Also the informal use of infinitesimal and infinite quantities is still a method used to construct idealized but tractable models within the famous J. von Neumann reasonably wide area of applicability. We review the theory of generalized smooth functions as a candidate to address both these needs: a rigorous but simple language of infinitesimal and infinite quantities, and the possibility to deal with continuous and generalized function as if they were smooth maps: with pointwise values, free composition and hence nonlinear operations, all the classical theorems of calculus, a good integration theory, and new existence results for differential equations. We exemplify the applications of this theory through several models of singular dynamical systems: deduction of the heat and wave equations extended to generalized functions, a singular variable length pendulum wrapping on a parallelepiped, the oscillation of a pendulum damped by different media, a nonlinear stress–strain model of steel, singular Lagrangians as used in optics, and some examples from quantum mechanics.
URI: https://opendata.uni-halle.de//handle/1981185920/119087
http://dx.doi.org/10.25673/117127
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: Nonlinear dynamics
Verlag: Springer Science + Business Media B.V
Verlagsort: Dordrecht [u.a.]
Band: 112
Originalveröffentlichung: 10.1007/s11071-024-10223-8
Seitenanfang: 20573
Seitenende: 20609
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s11071-024-10223-8.pdf1.87 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen