Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/117127
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBryzgalov, Aleksandr-
dc.contributor.authorIslami, Kevin-
dc.contributor.authorGiordano, Paolo-
dc.date.accessioned2024-11-12T07:57:03Z-
dc.date.available2024-11-12T07:57:03Z-
dc.date.issued2024-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/119087-
dc.identifier.urihttp://dx.doi.org/10.25673/117127-
dc.description.abstractThe need to describe abrupt changes or response of nonlinear systems to impulsive stimuli is ubiquitous in applications. Also the informal use of infinitesimal and infinite quantities is still a method used to construct idealized but tractable models within the famous J. von Neumann reasonably wide area of applicability. We review the theory of generalized smooth functions as a candidate to address both these needs: a rigorous but simple language of infinitesimal and infinite quantities, and the possibility to deal with continuous and generalized function as if they were smooth maps: with pointwise values, free composition and hence nonlinear operations, all the classical theorems of calculus, a good integration theory, and new existence results for differential equations. We exemplify the applications of this theory through several models of singular dynamical systems: deduction of the heat and wave equations extended to generalized functions, a singular variable length pendulum wrapping on a parallelepiped, the oscillation of a pendulum damped by different media, a nonlinear stress–strain model of steel, singular Lagrangians as used in optics, and some examples from quantum mechanics.eng
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc510-
dc.titleInfinitesimal and infinite numbers in applied mathematicseng
dc.typeArticle-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleNonlinear dynamics-
local.bibliographicCitation.volume112-
local.bibliographicCitation.pagestart20573-
local.bibliographicCitation.pageend20609-
local.bibliographicCitation.publishernameSpringer Science + Business Media B.V-
local.bibliographicCitation.publisherplaceDordrecht [u.a.]-
local.bibliographicCitation.doi10.1007/s11071-024-10223-8-
local.openaccesstrue-
dc.identifier.ppn190826893X-
cbs.publication.displayform2024-
local.bibliographicCitation.year2024-
cbs.sru.importDate2024-11-12T07:56:41Z-
local.bibliographicCitationEnthalten in Nonlinear dynamics - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1990-
local.accessrights.dnbfree-
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
s11071-024-10223-8.pdf1.87 MBAdobe PDFThumbnail
View/Open