Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/115375
Titel: Model reduction for stochastic systems with nonlinear drift
Autor(en): Redmann, MartinIn der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2024
Art: Artikel
Sprache: Englisch
Zusammenfassung: In this paper, we study dimension reduction techniques for large-scale controlled stochastic differential equations (SDEs). The drift of the considered SDEs contains a polynomial term satisfying a one-sided growth condition. Such nonlinearities in high dimensional settings occur, e.g., when stochastic reaction diffusion equations are discretized in space. We provide a brief discussion around existence, uniqueness and stability of solutions. (Almost) stability then is the basis for new concepts of Gramians that we introduce and study in this work. With the help of these Gramians, dominant subspace is identified leading to a balancing related highly accurate reduced order SDE. We provide an algebraic error criterion and an error analysis of the propose model reduction schemes. The paper is concluded by applying our method to spatially discretized reaction diffusion equations.
URI: https://opendata.uni-halle.de//handle/1981185920/117329
http://dx.doi.org/10.25673/115375
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: Journal of mathematical analysis and applications
Verlag: Elsevier
Verlagsort: Amsterdam [u.a.]
Band: 535
Originalveröffentlichung: 10.1016/j.jmaa.2024.128133
Seitenanfang: 1
Seitenende: 29
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
1-s2.0-S0022247X24000544-main.pdf705.23 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen