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In this paper, we study dimension reduction techniques for large-scale controlled 
stochastic differential equations (SDEs). The drift of the considered SDEs contains 
a polynomial term satisfying a one-sided growth condition. Such nonlinearities in 
high dimensional settings occur, e.g., when stochastic reaction diffusion equations 
are discretized in space. We provide a brief discussion around existence, uniqueness 
and stability of solutions. (Almost) stability then is the basis for new concepts 
of Gramians that we introduce and study in this work. With the help of these 
Gramians, dominant subspace is identified leading to a balancing related highly 
accurate reduced order SDE. We provide an algebraic error criterion and an error 
analysis of the propose model reduction schemes. The paper is concluded by applying 
our method to spatially discretized reaction diffusion equations.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Model order reduction (MOR) aims to find low-order approximations for high-/infinite-dimensional sys-
tems of differential equations reducing the complexity of the original problem. Many MOR schemes are 
based on projections (Galerkin or Petrov-Galerkin type). In this context, the first goal is to identify solution 
manifolds and approximate them by low-dimensional linear subspaces. A reduced state variable, taking 
values in this subspace, is subsequently constructed in order to ensure an accurate estimation of the original 
dynamics. There is a rich selection of different MOR strategies. Proper orthogonal decomposition (POD) 
[20] is an approach, where solution spaces are learned from data. Methods like the iterative rational Krylov 
algorithm (IRKA) [13] rely on interpolation or on the minimization of certain error measures between sys-
tems. Moreover, there are Gramian based techniques like balanced truncation (BT) [25], where dominant 
subspaces of the original dynamics are associated to eigenspaces of these (algebraic) Gramians. Recently, 
there has been an enormous interest in dimension reduction for large-scale nonlinear systems. Data-driven 
[12,18,28] or interpolation/optimization based methods [3,6] were applied to such equations in a determin-
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istic framework. Generalizing BT to nonlinear systems was first addressed in [32]. Alternatives, where the 
reduced order model can be computed easier, can be found in [5,19].

MOR in probabilistic settings is even more essential than in the deterministic context discussed above. 
This is due to an enormous amount of system evaluations required, e.g., for conducting Monte-Carlo simu-
lations. On the other hand, it is also about the feasibility of certain algorithms. E.g., a stochastic differential 
equation (SDE) in dimension n is in some sense equivalent to a partial differential equation (PDE) with 
n spatial variables using the formula of Feynman-Kac. Knowing how hard it is to solve high-dimensional 
PDEs in general, it becomes clear how vital MOR for SDEs is. A POD approach for SDEs is studied in 
[34]. Balancing related or optimization based MOR techniques are, for instance, investigated in [2,4,7,31]
for the linear case. The advantage of the latter schemes is the possibility for a detailed error and stability 
analysis. However, an extension to nonlinear stochastic systems seems very challenging. A first approach for 
stochastic bilinear equations is presented in [29] but it might not work for more complex nonlinearities.

The goal of this paper is to extend BT to stochastic systems, e.g., with certain polynomial nonlinearities. 
In the deterministic case, a wide focus is on quadratic systems, see for instance [5,19]. This is because many 
nonlinear terms in a differential equation can be transformed to a quadratic expression using additional 
dummy variables. This approach is called lifting in the literature. It has the advantage that a large set 
of nonlinear systems can be covered if we know how to handle quadratic ones. However, this is also the 
drawback of this ansatz, since differential equations involving quadratic terms range from globally stable to 
finite time explosion systems, i.e., the existence of a global solution is not guaranteed. This large variety of 
properties makes it seem infeasible to develop a general theory like for example an error analysis with sharp 
bounds. For that reason, we do not intend to apply the technique of lifting the dynamics to a quadratic 
system in this paper, because one might lose track of essential properties that are usually not visible anymore 
in a transformed SDE. Instead we exploit the structure of our locally Lipschitz nonlinearity that we assume 
to be of one-sided linear growth. This also involves interesting polynomials that play a role in reaction 
diffusion equations. This type of growth will be reflected linearly in the associated Lyapunov operator that 
defines the Gramians that we propose in our MOR procedure.

In order to give a first intuition on our approach, let us introduce the simplest stochastic system covered 
by this paper

dx(t) = [Ax(t) + Bu(t) + f (x(t))]dt + N1x(t)dw(t), x(0) = x0, y(t) = Cx(t), (1)

where A, B, C, N1 are matrices of suitable dimension and f is a nonlinearity. The large-scale state variable is 
denoted by x, y is the quantity of interest and w is a scalar standard Wiener process. Later, we will consider 
vector-valued and square integrable Lévy processes instead. (Algebraic) Gramians are a pair of matrices P
and Q characterizing dominant directions in x(t) and y(t), t ∈ [0, T ], respectively. We consider a notion of 
Gramians that is associated to quadratic Lyapunov-type functions VX [x] := x�Xx, where X is a positive 
definite matrix. Later we set X = P−1 or X = Q. Denoting the solution to (1) by x(t, x0, B), a nonlinear 
Lyapunov operator L corresponding to VX occurs by applying Itô’s Lemma to the uncontrolled state:

EVX

[
x(t, x0, 0)

]
= VX

[
x0

]
+ E

t∫
0

LVX

[
x(s, x0, 0)

]
ds,

where LVX [x] := x�
(
A�X+XA +N�

1 XN1

)
x +2x�Xf(x). This operator characterizes exponential stability 

P -almost surely and in the mean square sense. This stability is given if LVX [x] ≤ −λVX [x] for some λ > 0
and all x ∈ Rn, see [23]. L can now also be used to define the Gramians as solutions P and Q of

LVP−1 [x] ≤ −x�P−1BB�P−1x, LVQ[x] ≤ −x�C�Cx (2)
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for all x ∈ Rn. Setting f ≡ 0 delivers the type of Gramians studied in [4]. Further, choosing N1 = 0 gives 
the Gramians of the linear deterministic case [25]. The most challenging difficulty in our setting is the 
nonlinear term f in L. The idea is to choose f , so that L can be linearized by an estimate of the form 
x�Xf(x) ≤ c2VX [x] for X ∈ {P−1, Q}, all x ∈ Rn and some real constant c2. Here, a type of one-sided 
linear growth of f will be vital. This linearization leads to the first Gramians introduced in Definition 4.1
which are accessible from the computational point of view in contrast to solutions of (2). In order to enlarge 
the set of suitable Gramians, the above linearization is weakened in the sense that we assume it to only 
be valid on “essential” parts of Rn instead of the whole space. This is the motivation for a more general 
Gramian pair in Definition 4.5 involving solely the subset of controls that we are interested in. One of our 
main contributions is to show that such Gramians characterize dominant subspaces and are hence defined 
in a meaningful way, see Theorem 4.7. Removing the less relevant information that we identified based on 
P and Q leads to a reduced system by BT. A second important contribution of this paper is the error 
analysis for the dimension reduction procedure. The Gramians of Definitions 4.1 and 4.5 will not deliver 
the classical bound known from the linear deterministic case [10,11]. We will have additional error terms 
related to f which, however, are expected to be small, see Theorem 6.1. Finally, we also introduce a third 
type of Gramians, see Definition 4.12. This notion of Gramians relies on a one-sided Lipschitz property of 
f instead of one-sided linear growth and is hence more restrictive. The advantage of the third Gramians is 
that the classical bound in [10,11] can also be achieved in this nonlinear stochastic setting, see Corollary 6.2. 
On the other hand, the Gramians of Definition 4.12 might be of lower practical relevance. In any case, all 
error bounds provide an important a-priori error criterion for the approximation quality based on algebraic 
values associated to P and Q.

The paper is now structured as follows. Section 2 deals with the setting and the first details concerning 
the goals of this work. In Section 3, we recall facts about existence and uniqueness of solutions to the 
considered nonlinear SDE. We further investigate global asymptotic stability as the basis of the Gramians 
that we introduce in Section 4. There, it is explained and reasoned how Gramians need to be chosen in 
order to find a good dominant subspace characterization and hence an accurate reduced system. We also 
discuss on properties of Gramians that need to be fulfilled to ensure the classical error bound for BT known 
for deterministic linear systems [10,11]. Having computed the desired Gramians based on the strategy that 
we provide, we explain how to compute the reduced system in Section 5. Finally, Section 6 delivers an 
error bound analysis for the balancing related MOR scheme, also involving a discussion on criteria for a 
high approximation quality. Section 7 illustrates the performance of the MOR technique by applying it to 
spatially discretized stochastic reaction diffusion equations.

2. Setting, notation and goal

Let 
(
Ω,F, (Ft)t∈[0,T ],P

)1 be a filtered probability space on which every stochastic process appearing in 

this paper is defined. Given an Rd-valued and square integrable Lévy process M = [M1 . . . Md ]� with 
mean zero, we assume that it is (Ft)t∈[0,T ]-adapted and its increments M(t + h) −M(t) are independent of 
Ft for t, h ≥ 0 and t + h ≤ T . Exploiting the independent and stationary increments, there exists a positive 
semidefinite matrix K = (kij)i,j=1,...,d, so that E[M(t)M(t)�] = Kt, see [27, Theorem 4.44] for a proof. We 
call K covariance matrix of M . Now, we consider the following large-scale nonlinear stochastic dynamics 
driven by M :

dx(t) = [Ax(t) + Bu(t) + f (x(t))]dt + N (x(t−)) dM(t), x(0) = x0, (3a)

y(t) = Cx(t), t ∈ [0, T ], (3b)

1 (Ft)t∈[0,T ] is right continuous and complete.
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where x(t−) := lims↑t x(s), A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, N : Rn → Rn×d is a linear mapping defined 
by N(x) = [N1x . . . Ndx ] for x ∈ Rn with N1, . . . , Nd ∈ Rn×n. The state vector x(t) ∈ Rn is assumed 
to be high-dimensional, whereas the quantity of interest y(t) ∈ Rp usually is a vector with a low number of 
entries. The nonlinear function f : Rn → Rn shall satisfy the following local Lipschitz condition

‖f(x) − f(z)‖2 ≤ cR ‖x− z‖2 , (4)

for ‖x‖2 , ‖z‖2 ≤ R, cR > 0 and any R > 0, where 〈·, ·〉2 denotes the Euclidean inner product with 
corresponding norm ‖·‖2. Further, we assume the special type of monotonicity condition

〈x, f(x)〉2 ≤ cf ‖x‖2
2 , (5)

for all x ∈ Rn and a constant cf . In the literature, (5) is called one-sided growth condition as well. In fact, 
cf can be negative. In this case, (5) is also known as dissipativity condition. Below, x(t, x0, B), t ∈ [0, T ], 
represents the solution to (3a) with initial condition x0 ∈ Rn and matrix B determining the inhomogeneous 
part of the state equation. The associated control process u is assumed to be an (Ft)t∈[0,T ]-adapted process 
with

‖u‖2
L2

T
:= E

T∫
0

‖u(t)‖2
2 dt < ∞.

Moreover, suppose that f(0) = 0 to ensure that the uncontrolled state equation (3a) (B = 0) has an 
equilibrium at zero. If f(0) �= 0, we can replace f by f −f(0) as well as B and u by [B f(0)] and [u 1]�, 
respectively. The above setting covers interesting polynomial nonlinearities. This fact is illustrated in the 
next example.

Example 2.1. The local Lipschitz condition (4) is fulfilled by all functions f with continuous partial deriva-
tives. This is particularly given for polynomials. If we assume f = f (i), i ∈ {1, 2, 3}, to be special third 
order polynomial, where

f (1)(x) = x ◦ (1n − x) ◦ (x− 1na) = (1 + a)x◦2 − x◦3 − ax, a ∈ R,

f (2)(x) = x− x◦3 and f (3)(x) = x− x ‖x‖2
2 ,

the monotonicity condition (5) holds. The products/powers involving “◦” have to be understood in the 
Hadamard (component wise) sense and 1n is the vector of ones having length n. Now, (5) can be verified 
by the following calculations

〈x, f (1)(x)〉2 = −a ‖x‖2
2 +

n∑
i=1

x2
i [(1 + a)xi − x2

i ] ≤
(a− 1)2

4 ‖x‖2
2 ,

〈x, f (2)(x)〉2 = ‖x‖2
2 −

n∑
i=1

x4
i ≤ ‖x‖2

2 , 〈x, f (3)(x)〉2 = ‖x‖2
2 − ‖x‖4

2 ≤ ‖x‖2
2

exploiting that (1 + a)xi − x2
i ≤ (a+1)2

4 for all xi ∈ R.

Our setting is not restricted to the functions of Example 2.1. However, we will frequently refer to these 
interesting cases. Let us point out that the component-wise functions f (1) and f (2) occur if the nonlinear 
part of certain (stochastic) reaction diffusion equations are evaluated on a spatial grid. To be more precise, 
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a finite difference discretization of Zeldovich-Frank-Kamenetsky (or FitzHugh-Nagano) and Chafee-Infante 
equations would lead to such a setting. This paper does not intend to discuss finite difference schemes for 
stochastic partial differential equations in detail. However, the interested reader may find more information 
regarding these methods in [14–16,33]. We also refer to, e.g., [8,21,24,27] for a theoretical treatment of 
stochastic reaction diffusion equations.

The goal of this paper is to drastically reduce the dimension of the high-dimensional system (3) in order to 
lower the computational complexity when solving this system of stochastic differential equations. Therefore, 
the solution manifold of (3a) shall be approximated by an r-dimensional subspace im[V ] of Rn (V ∈ Rn×r

is a full-rank matrix), so that we find a process xr yielding V xr(t) ≈ x(t). Inserting this estimate into (3)
leads to

V xr(t) = x0 +
t∫

0

AV xr(s) + Bu(s) + f(V xr(s))ds +
t∫

0

N (V xr(s−)) dM(s) + e(t) (6)

with y(t) ≈ yr(t) := CV xr(t) and where e(t) is the state equation error. Now, we enforce the residual e(t)
to be orthogonal to a second subspace im[W ] (W ∈ Rn×r has full rank). We further assume that our choice 
of W provides W�V = I. Multiplying (6) with W�, we obtain

dxr(t) = [Arxr(t) + Bru(t) + fr(xr(t))]dt + Nr(xr(t−))dM(t), (7a)

yr(t) = Crxr(t), t ∈ [0, T ], (7b)

with xr(0) = W�x0 ∈ Rr, r � n and y ≈ yr. Generally, we have that xr(t) ∈ Rr, Ar ∈ Rr×r, Br ∈ Rr×m, 
Cr ∈ Rp×r, Nr : Rr → Rr×d defined by Nr(xr) = [Nr,1xr . . . Nr,dxr ] for xr ∈ Rr, where Nr,i ∈ Rr×r

(i = 1, . . . , d) and fr : Rr → Rr. In particular, the reduced coefficients are of the following form

Ar = W�AV, Br = W�B, fr(·) = W�f(V ·), Nr,i = W�NiV, Cr = CV. (8)

The goal of this paper is to provide a reduced order method for which we can compute the projection 
matrices V and W and for which we find an accurate approximation of (3). Here, the main focus will be 
on the control dynamics and not on the initial state. Therefore, we study reduced order modelling when 
x0 = 0. Moreover, we aim to investigate Gramian based schemes which often heavily rely on stability of the 
state equation. Therefore, we discuss global asymptotic stability in the next section. Before doing so, we 
briefly point out that there is a unique solution to (3a) by referring to the existing literature.

3. Existence and uniqueness as well as global asymptotic stability

3.1. Existence and uniqueness for (3a)

Before focusing on the MOR procedure for (3), we briefly discuss that our setting is well-posed under 
the assumptions made above. This is summarized in the following theorem.

Theorem 3.1. Suppose that the local Lipschitz condition (4) and the monotonicity condition (5) hold and 
given that the control u is bounded. Then, equation (3a) has a unique global solution.

Proof. We define the drift function F (t, x) := Ax + Bu(t) + f(x) of (3a). Using (5) and exploiting that 
the remaining parts in the drift and diffusion are either linear in x or solely time dependent, we can find a 
constant cF,N , so that
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2〈x, F (t, x)〉2 + ‖N(x)K 1
2 ‖2

F ≤ cF,N

(
1 + ‖x‖2

2
)

(9)

given that the control u is bounded by a constant independent of t ∈ [0, T ] and ω ∈ Ω. Here, ‖ · ‖F denotes 
the Frobenius norm. Moreover, the drift F is locally Lipschitz continuous (uniformly in (t, ω)) in the sense of 
(4), since the same is true for f . As N is linear, it is particularly globally Lipschitz with respect to ‖ ·K 1

2 ‖F . 
The monotonicity condition (9) and local Lipschitz continuity of drift and diffusion yield existence and 
uniqueness of a solution to (3a) by [23, Theorem 3.5] if M is a Brownian motion. On the other hand, the 
arguments of Mao [23] can immediately be transferred to our more general setting because the Itô-integral 
w.r.t. M has essentially the same properties as the one in the Brownian case. The first property is the Itô-
isometry E 

∥∥∥∫ T

0 Ψ(s)dM(s)
∥∥∥2

2
= E 

∫ T

0 ‖Ψ(s)K 1
2 ‖2

F ds =: ‖Ψ‖2 for predictable2 processes Ψ with ‖Ψ‖ < ∞
which relies on the linear covariance function of M , see [27]. Secondly, the equation for the expected value 
of a quadratic form of the state variable has the same structure, see Lemma A.1. �

It is important to mention that existence and uniqueness result of Theorem 3.1 has been established 
in a more general setting than in [23] also covering ours, see [1]. There, the result was proved assuming a 
monotonicity condition, a local Lipschitz condition in the drift and the Brownian diffusion part as well as 
global Lipschitz continuity in the jump diffusion.

3.2. A note on global asymptotic stability

Stability concepts are essential in order to define computationally accessible Gramians which are vital 
for identifying less relevant information in a system like (3). We recall known facts for the linear part of (3)
based on the results in [17].

Proposition 3.2. Let f ≡ 0 and B = 0 in (3a), then the following statements are equivalent:

(a) The state in (3a) is exponentially mean square stable, i.e., there are k, β > 0, so that

√
E ‖x(t, x0, 0)‖2

2 ≤ ‖x0‖2 k e−βt .

(b) It holds that

λ
(
I ⊗A + A⊗ I +

d∑
i,j=1

Ni ⊗Njkij

)
⊂ C−,

where λ(·) denotes the spectrum of a matrix.
(c) There exists a matrix X > 0 with

A�X + XA +
d∑

i,j=1
N�

i XNjkij < 0.

Proof. A proof of these statements can be found in [9,30]. �
2 Predictable means that the process is measurable w.r.t. the σ algebra that is generated by left-continuous and (Ft)t∈[0,T ]-

adapted processes.
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Throughout the rest of the paper, we assume that

λ
(
I ⊗ (A + c1I) + (A + c1I) ⊗ I +

d∑
i,j=1

Ni ⊗Njkij

)
⊂ C− (10)

for some constant c1. According to Proposition 3.2 this means that (3a) with the shifted linear drift coefficient 
A + c1I is mean square asymptotically stable for B = 0 and f ≡ 0. The associated state variable is of the 
form ec1t x(t), so that the original state x(t) (B = 0 and f ≡ 0) needs to have a decay rate β > c1, see 
Proposition 3.2 (a), given that c1 is positive. We desire, but do not assume, that we can choose c1 ≥ cf , i.e., 
the decay rate of the linear part shall outperform the one-sided linear growth constant in (5). This requires 
a sufficiently stable linear part if cf > 0, e.g., for the nonlinearities in Example 2.1. Since cf can also be 
negative, this means that the linear part of (3a) can even be exponentially increasing in some cases. Using 
classical arguments of [17,23] based on quadratic Lyapunov-type functions, we provide the following criterion 
for the global mean square stability of the uncontrolled state equation (3a). This criterion is required around 
the discussion of the Gramians introduced later.

Theorem 3.3. Suppose that B = 0 in (3a) and given constants c1, c2 ∈ R and a matrix X > 0. If we have

(A + c1I)�X + X(A + c1I)+
d∑

i,j=1
N�

i XNjkij < 0 and (11)

〈x,Xf(x)〉2 ≤ c2

∥∥∥X 1
2x

∥∥∥2

2
(12)

for all x ∈ Rn. Then, there exist constants k, β > 0, so that

E ‖x(t, x0, 0)‖2
2 ≤ ‖x0‖2

2 k e(2(c2−c1)−β)t .

Proof. A proof is stated in Appendix B. �
Remark 3.4. If c1 ≥ c2 in Theorem 3.3, we obtain global mean square asymptotic stability for our nonlinear 
system. In particular, by assumption (5), (12) holds for X = I and c2 = cf . If (11) is now true for X = I

and c1 = cf , mean square asymptotic stability follows.

4. Gramians and dominant subspace characterization

In this section, algebraic objects, called Gramians, are introduced. We aim to construct them, so that their 
eigenspaces corresponding to small eigenvalues coincide with the information in (3) that can be neglected. 
It is not trivial to find the right notion for general nonlinearities f . However, the monotonicity condition 
in (5) will become essential for our concept. In particular, positive (semi)definite Gramian candidates X
have to preserve (5) in a certain sense when 〈·, ·〉2 is replaced by 〈·, X·〉2 or 〈·, X−1·〉2. We begin with a 
global Gramian concept to illustrate what we require. Subsequently, we immediately weaken it for practical 
reasons.

4.1. Monotonicity Gramians

First, a pair of Gramians is defined that characterizes dominant subspaces of (3) for all u ∈ L2
T .

Definition 4.1. Let c1 and c2 be constants. Then, a pair of matrices (P, Q) with P, Q > 0 is called global 
monotonicity Gramians if they satisfy
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(A + c1I)�P−1 + P−1(A + c1I) +
d∑

i,j=1
N�

i P−1Njkij ≤ −P−1BB�P−1, (13)

(A + c1I)�Q + Q(A + c1I) +
d∑

i,j=1
N�

i QNjkij ≤ −C�C, (14)

and if further holds that

〈x, P−1f(x)〉2 ≤ c2‖P− 1
2x‖2

2 and 〈x,Qf(x)〉2 ≤ c2‖Q
1
2x‖2

2 (15)

for all x ∈ Rn.

Notice that assumption (10) ensures the existence of solutions to (13) and (14), see [4,30]. In the following, 
we state a sufficient criterion for the existence of Gramians also satisfying (15).

Proposition 4.2. Suppose that (11) and (12) hold with some constants c1 and c2. Then, global monotonicity 
Gramians P and Q exist with the same constants.

Proof. We denote the left hand side of (11) by −Y and multiply it with γ > 0. Hence, we have

(A + c1I)�(γX) + (γX)(A + c1I) +
d∑

i,j=1
N�

i (γX)Njkij = −γY. (16)

Since Y > 0, we can ensure that −γY ≤ −(γX)BB�(γX) if γ is sufficiently small. Therefore, P = (γX)−1

solves (13) for a potentially small γ. On the other hand, this P gives us 〈x, P−1f(x)〉2 = γ〈x, Xf(x)〉2 ≤
γc2‖X

1
2x‖2

2 = c2‖P− 1
2x‖2

2. Now, we know that −γY ≤ −C�C if γ is sufficiently large. Consequently, 
Q = γX satisfies (14) for a potentially large γ. Moreover, we find that 〈x, Qf(x)〉2 = γ〈x, Xf(x)〉2 ≤
γc2‖X

1
2x‖2

2 = c2‖Q
1
2x‖2

2 using (12). This concludes the proof. �
Remark 4.3. Certainly, the existence of global monotonicity Gramians is not sufficient for our considerations. 
As we will see later, it is important to find candidates P and Q that have a large number of small eigenvalues. 
Consequently, one might have to solve a problem of minimizing tr(P ) and tr(Q) subject to (13), (14) and 
(15). Moreover, we allow c1 < c2 in Definition 4.1 to have an additional degree of freedom. However, this 
comes with a price. We will observe that c2− c1 is supposed to be small. In fact, we desire to choose c1 = c2
if such a c1 ensures (10).

Example 4.4.

• Choosing f = f (3) from Example 2.1, we see that 〈x, Xf (3)(x)〉2 ≤ ‖X 1
2x‖2

2 for any X ≥ 0 and all 
x ∈ Rn. Therefore, any solutions of (13) and (14) with c1 = c2 = cf = 1 are global monotonicity 
Gramians. In particular, we can choose the solution to the equality in (14) and the candidate with 
minimal trace in (13).

• If f is globally Lipschitz in some norm, then there exist a Lipschitz constant cL, so that 〈x, Xf(x)〉2 =
〈X 1

2x, X
1
2 f(x)〉2 ≤ ‖X 1

2x‖2‖X
1
2 f(x)‖2 ≤ cL‖X

1
2x‖2

2 given that X = P−1, Q > 0 meaning that every 
positive solution to (13) and (14) can be picked. However, cL depends on X which shows that c1 and c2
influence each other. On the other hand, this cL might not be the optimal candidate for the one-sided 
Lipschitz constant c2 which can even be negative, i.e., it is also challenging to identify optimal constants.
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We emphasize further that, generally, we cannot derive P and Q independent of (15). For instance, fixing 
c1 = c2 ≥ cf , we can easily find a solution Q for (14) and a vector x ∈ Rn, so that 〈x, Qf (1)(x)〉2 > c2‖Q

1
2x‖2

2. 
Here, f = f (1) is the function defined in Example 2.1. Having in mind that we aim to fix c1 and c2 close to 
each other with associated Gramians P and Q having a large number of small eigenvalues, the concept of 
global Gramians might generally be too restrictive. Therefore, it is more reasonable to seek for solutions of 
(13) and (14) that satisfy (15) on average instead of point-wise. This means, we aim to allow for positive 
values of the monotonicity gaps

GP−1(x) := 〈x, P−1(f(x) − c2x)〉2 and GQ(x) := 〈x,Q(f(x) − c2x)〉2 (17)

as long as GP−1 and GQ are mainly non-positive on the essential parts of Rn. We specify the above arguments 
in the following definition. In this context, we introduce the set U of controls u ∈ L2

T for which we desire to 
evaluate system (3). The following pair of Gramians (P, Q) identifies less important direction for controls 
in U. Therefore, it is meaningful to pick Gramian candidates that ensure a large set U.

Definition 4.5. Let c1, c2 be constants and U ⊆ L2
T be the set of controls we are interested in. Then, a pair of 

matrices (P, Q) with P, Q > 0 is called average monotonicity Gramians for U if (13) and (14) are satisfied, 
respectively, and if instead of (15) it holds that

E

t∫
0

〈x(s), P−1f(x(s))〉2ds ≤ c2 E

t∫
0

‖P− 1
2x(s)‖2

2ds and (18)

E

t∫
0

〈x(s), Qf(x(s))〉2ds ≤ c2 E

t∫
0

‖Q 1
2x(s)‖2

2ds (19)

for all t ∈ [0, T ] and all state variables x(t) = x(t, 0, u) with u ∈ U.

Certainly, a global is also an average monotonicity Gramian with U = L2
T . Suppose that there are areas, 

where one of the functions in (17) is positive. Then, controls u concentrating the state variable x in such 
areas for a long time will violate (18) or (19).

Remark 4.6. In Definitions 4.1 and 4.5, Gramians are constructed as solutions to (shifted) linear matrix 
inequalities in order to allow a practical computation. This is possible due to the monotonicity condition 
for f in (5) which shall be preserved in some sense under the inner products defined by the Gramians P
and Q. A more general version of global monotonicity Gramians is obtained by adding twice the estimates 
in (15) to (13) and (14) resulting in

x�
(
A�P−1 + P−1A +

d∑
i,j=1

N�
i P−1Njkij

)
x + 2〈x, P−1f(x)〉2 ≤ −‖B�P−1x‖2

2 + c‖P− 1
2x‖2

2, (20)

x�
(
A�Q + QA +

d∑
i,j=1

N�
i QNjkij

)
x + 2〈x,Qf(x)〉2 ≤ −‖Cx‖2

2 + c‖Q 1
2x‖2

2 (21)

for all x ∈ Rn, where c ≥ 0 is some “small” constant. The same way, average monotonicity Gramians can be 
generalized setting x = x(s) in (20) and (21), taking the expected value and integrating both sides of these 
inequalities over each subinterval [0, t] with 0 < t ≤ T . However, we will not discuss this generalization in 
detail below.
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4.2. Relevance of monotonicity Gramians

In the following, we state in which sense the Gramians of Definition 4.5 help to identify the dominant 
subspaces of (3). This then motivates a truncation procedure resulting in a special type of reduced system (7). 
Below, let us assume that x0 = 0, i.e., x(t) = x(t, 0, u). By definition, Gramians are positive (semi)definite 
matrices. Consequently, we can find an orthonormal basis (pk) for Rn consisting of eigenvalues of P with 
corresponding eigenvalues (λP,k). The same is true for Q, where the basis is denoted by (qk) with associated 
eigenvalues (λQ,k). Hence, the state variable can be represented as

x(t) =
n∑

k=1

〈x(t), pk〉2 pk and x(t) =
n∑

k=1

〈x(t), qk〉2 qk. (22)

Based on this representation, we aim to answer which directions pk are less relevant in (3a) and which 
directions qk can be neglected in (3b).

Theorem 4.7. Let P and Q be average monotonicity Gramians for the set of controls U ⊆ L2
T and constants 

c1, c2 according to Definition 4.5. Moreover, let (pk, λP,k) and (qk, λQ,k) be associated bases of eigenvectors 
giving us (22). Then, given a zero initial state, we have

sup
t∈[0,T ]

E〈x(t), pk〉22 ≤ λP,k ecT ‖u‖2
L2

T
, (23)

E

t∫
0

‖y(s)‖2
2 ds ≤ 2E

t∫
0

〈Qx(s), Bu(s)〉2 ec(t−s) ds

= 2
n∑

k=1

λQ,kE

t∫
0

〈qk, x(s)〉2〈qk, Bu(s)〉2 ec(t−s) ds (24)

for all t ∈ [0, T ] and u ∈ U, where c = max{0, 2(c2 − c1)}.

Proof. We find inequalities for E 
[
x(t)�Xx(t)

]
, where X ∈ {P−1, Q}. To do so, we apply Lemma A.1 to 

X
1
2x(t) and obtain

d

dt
E
[
x(t)�Xx(t)

]
= 2E

[
x(t)�X[Ax(t) + Bu(t) + f(x(t))]

]
+

d∑
i,j=1

E
[
x(t)�N�

i XNjx(t)
]
kij .

We integrate this equation over [0, t] with t ≤ T yielding

E
[
x(t)�Xx(t)

]
= E

t∫
0

[
x(s)�

(
A�X + XA +

d∑
i,j=1

N�
i XNjkij

)
x(s)

]
ds

+ 2
t∫

0

E
[
x(s)�X

[
Bu(s) + f(x(s))

]]
ds

≤ E

t∫ [
x(s)�

(
(A + c1I)�X + X(A + c1I) +

d∑
i,j=1

N�
i XNjkij

)
x(s)

]
ds
0
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+ 2
t∫

0

E
[
x(s)�XBu(s)

]
ds + c

t∫
0

E
[
x(s)�Xx(s)

]
ds (25)

exploiting (18), (19) and that x0 = 0. Setting α(t) := 2 
∫ t

0 E 
[
x(s)�XBu(s)

]
ds and X = Q, we obtain

E
[
x(t)�Qx(t)

]
≤ −

t∫
0

E
[
x(s)�C�Cx(s)

]
ds + 2

t∫
0

E
[
x(s)�QBu(s)

]
ds + c

t∫
0

E
[
x(s)�Qx(s)

]
ds

= −‖y‖2
L2

t
+ α(t) + c

t∫
0

E
[
x(s)�Qx(s)

]
ds

using (14). Therefore, by (53), we have

E
[
x(t)�Qx(t)

]
≤

t∫
0

(α̇(s) − E ‖y(s)‖2
2) ec(t−s) ds,

and hence 
∫ t

0 E ‖y(s)‖2
2 ds ≤

∫ t

0 α̇(s) ec(t−s) ds. Inserting the representation for x(s) in (22) yields

‖y‖2
L2

t
≤ 2

t∫
0

E
[
x(s)�QBu(s)

]
ec(t−s) ds = 2

t∫
0

E

[(
Q

n∑
k=1

〈x(s), qk〉2 qk
)�

Bu(s)
]

ec(t−s) ds

= 2
n∑

k=1

λQ,k

t∫
0

E
[
〈x(s), qk〉2 q�k Bu(s)

]
ec(t−s) ds

leading to (24). With X = P−1 in (25), it holds that

E
[
x(t)�P−1x(t)

]
≤ −

t∫
0

E
[
x(s)�P−1BB�P−1x(s)

]
ds + 2

t∫
0

E
[
x(s)�P−1Bu(s)

]
ds

+ c

t∫
0

E
[
x(s)�P−1x(s)

]
ds

= E

t∫
0

‖u(s)‖2
2 − ‖B�P−1x(s) − u(s)‖2

2ds + c

t∫
0

E
[
x(s)�P−1x(s)

]
ds

exploiting (13). Applying (52), we obtain

E
[
x(t)�P−1x(t)

]
≤ E

t∫
0

‖u(s)‖2
2 ds +

t∫
0

s∫
0

E ‖u(v)‖2
2 dv c ec(t−s) ds

≤ ect E
t∫

0

‖u(s)‖2
2 ds.

We further observe that
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〈x(t), pk〉22 ≤ λP,k

n∑
i=1

λ−1
P,i〈x(t), pi〉22 = λP,k

∥∥∥ n∑
i=1

λ
− 1

2
P,i 〈x(t), pi〉2 pi

∥∥∥2

2
= λP,k

∥∥∥P− 1
2x(t)

∥∥∥2

2

= λP,k x(t)�P−1x(t),

so that (23) follows. This concludes the proof. �
Estimate (23) tells us that the state variable is small in the direction of pk if λP,k is small and in case 

c T is not too large (c2 − c1 is supposed to be little). Consequently, these eigenspaces of P can be neglected 
in our considerations. The eigenspaces spanned by vectors qk that are associated to small eigenvalues of Q
are also of minor relevance due to (24). This inequality shows that such qk barely contribute to the energy 
of the output y on each subinterval [0, t].

Remark 4.8.

• Following basically the same steps, the result of Theorem 4.7 holds also true if the more general notion 
of Gramians in Remark 4.6 is used.

• Theorem 4.7 is formulated for u ∈ U since it is based on (18) and (19). This does not mean that a 
reduced order model based on neglecting eigenspaces of P and Q associated to small eigenvalues leads 
to a bad approximation for u ∈ L2

T \ U. This is because (18) and (19) might still almost hold in that 
cases since suitable Gramians lead to GQ and GP−1 in (17) being small when they are positive. Then, 
the estimates in Theorem 4.7 will approximately hold.

4.3. Computation of monotonicity Gramians

4.3.1. General strategy on the choice of P and Q
We aim to compute average monotonicity Gramians P and Q for a large set U of controls. In theory, U

can be uncountable but practically one might think of a given large finite set of control functions. We choose 
P and Q as solutions to (13) and (14) as such inequalities can be solved in practice, but not all solutions 
are suitable candidates for a MOR procedure. In more detail, we need them to ensure that GP−1 and GQ

in (17) have a local maximum in the origin or a saddle point with very few increasing directions. Else, the 
monotonicity condition might immediately be violated for the majority of controls. This would not allow 
(18) and (19) to hold for a large U. On the other hand, it is essential that the area where the monotonicity 
condition is fulfilled (GP−1 and GQ are non-positive) clearly dominates the one where it does not hold. A 
possible and acceptable scenario in dimension n = 2 is illustrated in Fig. 1. Here, the monotonicity gap GQ

is depicted for f = f (2), c2 = cf = 1 and Q =
[ 0.49426 0.58159

0.58159 0.68542

]
, a matrix with a large and a small eigenvalue. 

The blue color stands for small absolute values and red for large ones. GQ is non-positive except for the 
black areas, where the monotonicity condition is slightly violated.

4.3.2. Computation for polynomial nonlinearity f and A being a discrete Laplacian
Based on the fundamental requirements on suitable Gramians stated in Section 4.3.1, we provide more 

details on the actual computation of P and Q when (3) results, e.g., from a spatial discretization of a 
stochastic heat equation with polynomial nonlinearities. This case will also be of interest in Section 7. In 
the following proposition, a simple criterion for local optimality for GP−1 and GQ is given if X = P−1, Q is 
positive definite.

Proposition 4.9. Define the function g(x) = 〈x, X(f(x) − c2x)〉2 with a constant c2, f being twice differen-
tiable and X > 0. We assume that
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Fig. 1. GQ for a special choice of Q, n = 2, f = f(2) and c2 = cf = 1. The area in black marks the regions, where GQ is positive. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

fxj
(x)|x=0 − c2ej = −c̃2ej (26)

for all j ∈ {1, . . . , n} and c̃2 > 0, where ej is the j-th unit vector in Rn. Then, g has a local maximum in 
x = 0.

Proof. It is easy to check that x = 0 is an extreme value since gxi
(x) = 〈ei, X(f(x) −c2x)〉2 +〈x, X(fxi

(x) −
c2ei)〉2 is zero at the origin. Moreover, we derive gxixj

(x) = 〈ei, X(fxj
(x) −c2ej)〉2+〈ej , X(fxi

(x) −c2ei)〉2+
〈x, Xfxixj

(x)〉2. Therefore, we find 
(
gxixj

(0)
)
i,j=1,...,n = −2c̃2X < 0 which concludes the proof. �

Condition (26) is, e.g., satisfied if polynomials like in Example 2.1 are considered. We can therefore 
observe that GP−1 and GQ have a local maximum for the choices of f given in this example in case c2
is sufficiently large. This is what we desire according to Section 4.3.1. The strategy for computing the 
Gramians for functions f as in Example 2.1 and, e.g., a discrete Laplacian A (or another asymptotically 
stable matrix) is now as follows:

• We fix c2 ≥ cf , since this means that GP−1 and GQ are non-positive along the bases of eigenvectors 
used in (22). This is a consequence of assumption (5).

• We set c1 = c2 providing c = 0 if possible meaning that (10) has to hold. Else, we choose c1, so that 
c2 − c1 is a small positive number motivated by Theorem 4.7. If c1 > 0, the possibility of this choice 
again depends on weather (10) is satisfied.

• We then compute Q as the solution to the equality in (14).
• Moreover, we derive P by solving the optimization problem

min
P>0

tr(P ) subject to (13) (27)

motivated by Theorem 4.7 that indicates that a large number of small eigenvalues of P leads to a 
low-dimensional dominant subspace.

This procedure provides that GP−1 and GQ are non-positive on large parts of Rn for the particular functions 
introduced in Example 2.1 as well as stable matrices A (e.g. discrete Laplacian). Only small positive values 
are taken by GP−1 and GQ on the other area. This leads to (18) and (19) for a large U. This is what 
we observe from numerical experiments. In general, a good choice for P and Q guaranteeing (18) and 
(19) for many different controls always depends on the particular nonlinearity f . Therefore, no universal 
recommendation can be given here.
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Let us conclude this section by briefly sketching how (27) is solved in practice. We reformulate (13) by 
multiplying it with P from the left and from the right leading to

(A + c1I)P + P (A + c1I)� + BB� +
d∑

i,j=1
PN�

i P−1NjkijP ≤ 0. (28)

Since 
∑d

i,j=1 PN�
i kijP

−1NjP = P [ N�
1 ... N�

d ] (K⊗P−1) [ N�
1 ... N�

d ]� P , we obtain the following equivalent 
representation [

(A + c1I)P + P (A + c1I)� + BB� P [ N�
1 ... N�

d ]
[ N�

1 ... N�
d ]� P −K−1 ⊗ P

]
≤ 0 (29)

for (28) based on Schur complement conditions for the definiteness of a matrix. Here, we need to further 
assume that K is invertible. Now, we can use a linear matrix inequality solver to find a solution to the 
minimization of tr(P ) subject to (29) and P > 0. In this paper, we use YALMIP and MOSEK [22,26] for 
an efficient computation of P .

4.4. Extension under one-sided Lipschitz continuity

Many functions f satisfying (5) are also one-sided Lipschitz continuous. However, we require an extended 
version of this continuity concept in the context of the error analysis in Section 6. In detail the following 
inequalities are supposed to hold:

〈x± z, f(x) ± f(z)〉2 ≤ cf ‖x± z‖2
2 , (30)

for all x, z ∈ Rn and a constant cf . Condition (30) will later inspire the extended definition of Gramians. 
Notice that one-sided Lipschitz continuity is defined with a minus in (30) but we additionally ask for this 
property when replacing each minus by a plus. In this context, let us look at the functions of Example 2.1
again. We begin with f (2) and f (3) and show that (30) is satisfied.

Example 4.10. Inserting f (3)(x) = x − ‖x‖2
2 x below yields

〈x± z, f (3)(x) ± f (3)(z)〉2 = ‖x± z‖2
2 − 〈x± z, ‖x‖2

2 x± ‖z‖2
2 z〉2.

Now, we find that

〈x± z, ‖x‖2
2 x± ‖z‖2

2 z〉2 = ‖x‖4
2 + ‖z‖4

2 ± 〈x, z〉2(‖x‖2
2 + ‖z‖2

2) ≥ ‖x‖4
2 + ‖z‖4

2 − 0.5(‖x‖2
2 + ‖z‖2

2)
2

= 0.5(‖x‖2
2 − ‖z‖2

2)
2 ≥ 0

and hence (30) holds with cf = 1 in case f = f (3). We obtain from f (2)(x) = x − x◦3 that

〈x− z, f (2)(x) − f (2)(z)〉2 = ‖x− z‖2
2 − 〈x− z, x◦3 − z◦3〉2.

Since we have that

〈x− z, x◦3 − z◦3〉2 =
n∑

i=1
(x4

i + z4
i − zix

3
i − xiz

3
i ) =

n∑
i=1

(xi − zi)2(x2
i + z2

i + zixi)

≥
n∑

i=1
(xi − zi)20.5(x2

i + z2
i + 2zixi) ≥ 0,
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we obtain 〈x − z, f (2)(x) − f (2)(z)〉2 ≤ ‖x− z‖2
2 and consequently the point symmetry of f (2) yields

〈x + z, f (2)(x) + f (2)(z)〉2 = 〈x− (−z), f (2)(x) − f (2)(−z)〉2 ≤ ‖x− (−z)‖2
2 = ‖x + z‖2

2 .

Therefore, cf = 1 in (30) for f = f (2).

As we will see below, f (1) is also one-sided Lipschitz but (30) is not fulfilled if a plus is considered.

Example 4.11. Using f (1)(x) = (1 + a)x◦2 − x◦3 − ax leads to

〈x− z, f (1)(x) − f (1)(z)〉2 = −a ‖x− z‖2
2 + 〈x− z, (1 + a)(x◦2 − z◦2) − (x◦3 − z◦3)〉2.

We obtain that

〈x− z, (1 + a)(x◦2 − z◦2) − (x◦3 − z◦3)〉2 =
n∑

i=1
[(1 + a)(x3

i − zix
2
i − xiz

2
i + z3

i ) − x4
i + xiz

3
i + zix

3
i − z4

i ]

=
n∑

i=1
(xi − zi)2[(1 + a)(xi + zi) − x2

i − z2
i − xizi] ≤

(1 + a)2

3 ‖x− z‖2
2

exploiting that (1 + a)(xi + zi) − x2
i − z2

i − xizi ≤ (1+a)2
3 for all i ∈ {1, . . . , n}. Therefore, we have

〈x− z, f (1)(x) − f (1)(z)〉2 ≤ a2 − a + 1
3 ‖x− z‖2

2 .

We observe that the one-sided Lipschitz constant is different from the monotonicity constant in Example 2.1. 
Moreover, we show that (30) does not hold with a plus. Let n = 1 and cf be an arbitrary constant. We fix 
x = 1 and z = ε − 1 with ε > 0. We obtain

〈x + z, f (1)(x) + f (1)(z)〉2 = ε[−aε + (1 + a)(1 + (ε− 1)2) − (1 + (ε− 1)3)]

= ε[2(1 + a) − ε3 + (4 + a)ε2 − (5 + 3a)ε] > cf ε
2 = cf ‖x + z‖2

2 ,

if ε is sufficiently small and a > −1.

Motivated by the one-sided Lipschitz continuity (30), a Gramian based inner product shall preserve this 
property leading to the following extension of Definition 4.1.

Definition 4.12. Let c1 and c2 be constants. Then, a pair of matrices (P, Q) with P, Q > 0 is called global 
one-sided Lipschitz Gramians if they satisfy (13), (14) and

〈x + z, P−1(f(x) + f(z))〉2 ≤ c2‖P− 1
2 (x + z)‖2

2,

〈x− z,Q(f(x) − f(z))〉2 ≤ c2‖Q
1
2 (x− z)‖2

2

(31)

for all x, z ∈ Rn.

Example 4.13. Let P, Q > 0 be solutions to (13), (14) and f be globally Lipschitz with −f(x) = f(−x). 
Then, we can always construct global one-sided Lipschitz Gramians, since for X ∈ {P−1, Q} satisfying (13)
and (14), we have that

〈X 1
2 (x± z), X 1

2 (f(x) ± f(z))〉2 ≤ ‖X 1
2 (x± z)‖2‖X

1
2 (f(x) ± f(z))‖2 ≤ c2‖X

1
2 (x± z)‖2

2

for some suitable constant c2.
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If (31) is satisfied for z = 0, P and Q are global monotonicity Gramians. We will see later that a reduced 
order model based on the Gramians introduced in Definition 4.12 will lead to error estimates for all controls 
u ∈ L2

T . However, as in the global monotonicity Gramian case, it might be inefficient to choose a Gramian 
allowing to derive estimates for all u. The error analysis will show that it is actually enough to have (31) for 
large/essential sets of pairs (x, z) ∈ Rn ×Rn in order to find a reasonable error criterion for a large number 
of different controls, i.e., the one-sided Lipschitz gaps

G+
P−1(x, z) := 〈x + z, P−1(f(x) + f(z))〉2 − c2‖P− 1

2 (x + z)‖2
2,

G−
Q(x, z) := 〈x− z,Q(f(x) − f(z))〉2 − c2‖Q

1
2 (x− z)‖2

2

(32)

in (31) are mainly negative but also small positive values will be allowed. We postpone the discussion of a 
weaker version of Definition 4.12 to Section 6.

Remark 4.14. One-sided Lipschitz Gramians are again special solutions of linear matrix inequalities for 
reasons of accessibility. Analogue to Remark 4.6 this concept can be formulated more generally. Adding 
twice (31) to the respective inequality in (13) and (14) leads to

(x + z)�
(
A�P−1 + P−1A +

d∑
i,j=1

N�
i P−1Njkij

)
(x + z) + 2〈x + z, P−1(f(x) + f(z))〉2 (33)

≤ −‖B�P−1(x + z)‖2
2 + c‖P− 1

2 (x + z)‖2
2,

(x− z)�
(
A�Q + QA +

d∑
i,j=1

N�
i QNjkij

)
(x− z) + 2〈x− z,Q(f(x) − f(z))〉2 (34)

≤ −‖C(x− z)‖2
2 + c‖Q 1

2 (x− z)‖2
2

for all x, z ∈ Rn with c ≥ 0. We will see that this structure is what one requires to achieve a suitable global 
error bound for all u ∈ L2

T . Notice that z = 0 leads to (20) and (21), respectively. We will not discuss a 
definition of Gramians P and Q via (33) and (34) in further detail but will refer to them within the error 
analysis.

Now, let us briefly discuss the existence of global one-sided Lipschitz Gramians.

Proposition 4.15. Given a matrix X > 0 satisfying (11) for some constant c1 and

〈x± z,X(f(x) ± f(z))〉2 ≤ c2‖X
1
2 (x± z)‖2

2

for all x, z ∈ Rn and a constant c2. Then, global one-sided Lipschitz Gramians exist with these constants.

Proof. The proof uses the same argument as in Proposition 4.2 and is therefore omitted. �
Example 4.11 indicates that the global one-sided Lipschitz Gramian P might not be well-defined in case 

f = f (1).

5. Particular reduced order model

We select a nonsingular S ∈ Rn×n that we use to simultaneously diagonalize Gramians P and Q. This 
means that the bases of eigenvectors (pk) and (qk) in (22) will be the canonical basis of Rn. Consequently, 
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by Theorem 4.7, unimportant directions can be identified with components in the transformed state variable 
that are associated with small diagonal entries of the diagonalized Gramians. In particular, the transfor-
mation matrix defines the new state by xn = Sx. Inserting this into (3) leads to an equivalent stochastic 
system with coefficients

(An, Bn, fn, Nn,i, Cn) := (SAS−1, SB, Sf(S−1·), SNiS
−1, CS−1) (35)

instead of the original ones (A, B, f, Ni, C), i.e.,

dxn(t) = [Anxn(t) + Bnu(t) + fn (xn(t))]dt +
d∑

i=1
Nn,i (xn(t−)) dMi(t), y(t) = Cnxn(t), (36)

with t ∈ [0, T ] and xn(0) = 0. The new system (36) has the same input u and output y. Moreover, 
properties like asymptotic stability are not affected. However, the Gramians are different. These are given 
in the following proposition, where the precise diagonalizing transformation is stated.

Proposition 5.1. Suppose that S is an invertible matrix. If P and Q are global/average monotonicity or 
one-sided Lipschitz Gramians of (3) according to Definitions 4.1, 4.5 or 4.12. Then, Pn = SPS� and 
Qn = S−�QS−1 are the respective Gramians in the transformed setting (36). Given that P, Q > 0, we find 
that Pn = Qn = Σn = diag(σ1, . . . , σn) using the balancing transformation

S = Σ
1
2
nU

�L−1
P , (37)

where P = LPL
�
P and L�

PQLP = UΣ2
nU

� is a spectral factorization with an orthogonal U .

Proof. We multiply (13) and (14) with S−� from the left and with S−1 from the right hand side. Conse-
quently, we see that SPS� and S−�QS−1 satisfy these inequalities under the coefficients in (35). Moreover, 
(15) is preserved under this transformation, since

〈x, P−1
n fn(x)〉2 = 〈x, S−�P−1S−1Sf(S−1x)〉2 = 〈S−1x, P−1f(S−1x)〉2 ≤ c2‖P− 1

2S−1x‖2
2

= c2‖P
− 1

2
n x‖2

2 and

〈x,Qnfn(x)〉2 = 〈x, S−�QS−1Sf(S−1x)〉2 = 〈S−1x,Qf(S−1x)〉2 ≤ c2‖Q
1
2S−1x‖2

2 = c2‖Q
1
2
nx‖2

2.

Analogue, we can prove that the one-sided Lipschitz conditions (31) hold under the transformation. With 
xn(s) = xn(s, 0, u) given u ∈ U, we now find

〈xn(s), P−1
n fn(xn(s))〉2 = 〈x(s), P−1f(x(s))〉2 and 〈xn(s), Qnfn(xn(s))〉2 = 〈x(s), Qf(x(s))〉2,

as well as

‖P− 1
2

n xn(s)‖2
2 = ‖P− 1

2x(s)‖2
2 and ‖Q− 1

2
n xn(s)‖2

2 = ‖Q 1
2x(s)‖2

2,

so that the average monotonicity conditions (18) and (19) still hold for the same set U. We use (37) and 

obtain Pn = Σ
1
2
nU�L−1

P PL−�
P UΣ

1
2
n = Σn as well as Qn = Σ− 1

2
n U�L�

PQLPUΣ− 1
2

n = Σn which concludes the 
proof. �
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We observe that the diagonal entries of the balanced Gramians are σi =
√
λi(PQ). We call them 

Hankel singular values (HSVs) from now on. Now, we partition the balanced state xn =
[
xn,1
xn,2

]
and Σn =

diag(Σr, Σ2,n−r), where Σr = diag(σ1, . . . , σr) contains the large and Σ2,n−r = diag(σr+1, . . . , σn), r < n, 
the small HSVs. The same is done for (35) yielding

An =
[
Ar 	
	 	

]
, Bn =

[
Br

	

]
, Nn,i =

[
Nr,i 	
	 	

]
, Cn = [Cr 	 ] and

fr(xr) : = f̃r(
[ xr

0
]
), where fn =

[
f̃r
	

]
, xr ∈ Rr, 0 ∈ Rn−r.

(38)

Since xn,2 is associated to small values in Σ2,n−r, we truncate the equation for these variables and remove 
them from the dynamics of xn,1 and y. This results in a reduced system (7) with coefficients given by (38). 
Setting V = Vr and W = Wr, where

S−1 = [Vr 	 ] and S� = [Wr 	 ] ,

we see that our reduced system’s structure is of the form as in (8). Here, S is given by (37).

6. Error analysis of Gramian based reduced system

We consider the reduced system (7) with state dimension r and coefficients like in (38). As an intermediate 
step, let us introduce the same type of reduced model with dimension k = r, r + 1, . . . , n which we write as 
follows:

dxk(t) = [Akxk(t) + Bku(t) + fk(xk(t))]dt +
d∑

i=1
Nk,ixk(t−)dMi(t), yk(t) = Ckxk(t). (39)

Setting yn := y, we then observe that

‖y − yr‖ ≤
n∑

i=r+1
‖yk − yk−1‖ , (40)

where ‖·‖ is some function space norm. This means that we have to investigate the error ‖yk − yk−1‖ of 
removing a single HSV. We can derive the reduced system of order k− 1 from (39) by setting the last entry 
of xk equal to zero. Doing so, we obtain

d
[
xk−1(t)

0

]
=
[
Ak

[
xk−1(t)

0

]
+ Bku(t) + fk

( [
xk−1(t)

0

] )
−
[

0
v0(t)

] ]
dt

+
d∑

i=1

[
Nk,i

[
xk−1(t−)

0

]
−
[

0
vi(t−)

] ]
dMi(t), yk−1(t) = Ck

[
xk−1(t)

0

]
,

(41)

where the first k−1 rows in the state equation of (41) represent the reduced order model of dimension k−1
and v0, . . . , vd are (non specified) scalar processes that are introduced to ensure the equality in the last line 
which can be read as d0 = 0dt +

∑d
i=1 0dMi(t).

Theorem 6.1. Let y be the output of (3) with x(0) = 0 and given the r-dimensional reduced system (7) with 
output yr, coefficients as in (38) and xr(0) = 0. If this reduced system is based on Gramians P and Q
satisfying (13) and (14) for a constant c1. Then, for all u ∈ L2

T , we have
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√√√√√E

T∫
0

‖y(s) − yr(s)‖2
2 ec(T−s) ds ≤

n∑
k=r+1

√√√√√E

T∫
0

[
2G−

Q

(
Vkxk(s), Vk−1xk−1(s)

)
+ σ2

k

(
2G+

P−1

(
Vkxk(s), Vk−1xk−1(s)

)
+ 4 ‖u(s)‖2

2
)]

ec(T−s) ds,

where c = max{0, 2(c2 − c1)} is defined by another constant c2 (e.g. the parameter of Definitions 4.1, 4.5 or 
4.12) and G+

P−1 , G−
Q are the associated one-sided Lipschitz gaps in (32). Moreover, xk is the reduced state 

variable of order k = r, r + 1. . . . , n and Vk is the associated projection matrix being the first k columns of 
the inverse S−1 of the balancing transformation defined by (37).

Corollary 6.2. Given the assumptions of Theorem 6.1, let P and Q be global one-sided Lipschitz Gramians 
according to Definition 4.12. Then, the following bound holds:

√√√√√E

T∫
0

‖y(s) − yr(s)‖2
2 ec(T−s) ds ≤ 2

n∑
k=r+1

σk

√√√√√E

T∫
0

‖u(s)‖2
2 ec(T−s) ds (42)

for all u ∈ L2
T . The same bound is established if the Gramians are defined by (33) and (34).

Proof. The functions G+
P−1 and G−

Q are non-positive by construction of the global one-sided Lipschitz 
Gramians. Consequently, the result immediately follows from the one of Theorem 6.1. It is not an immediate 
consequence of Theorem 6.1 that (33) and (34) lead to the same result. However, the proof uses exactly the 
same ideas. Therefore, it is omitted. �
Remark 6.3.

• We found the classical bound for reduced order systems based on balanced truncation in Corollary 6.2
up to the exponential terms in (42), see [10,11] for the deterministic and [4] for the stochastic linear 
case. As mentioned before, choices of Gramians are only acceptable if c is sufficiently small, i.e., the 
exponentials do not dominate. On the other hand, global one-sided Lipschitz Gramians might not be a 
optimal in terms of their spectrum, so that a weaker concept is more reasonable.

• As mentioned in Section 4.4, we can allow for small positive one-sided Lipschitz gaps G−
Q and G+

P−1 , 
see (32), in certain (small) regions. If we pick P and Q accordingly, Theorem 6.1 then tells us that the 
averages

E

T∫
0

G−
Q

(
Vkxk(s), Vk−1xk−1(s)

)
ec(T−s) ds and

E

T∫
0

G+
P−1

(
Vkxk(s), Vk−1xk−1(s)

)
ec(T−s) ds

will be non-positive for a large number of controls u ∈ L2
T and slightly positive in many of the other 

scenarios. This means that (42) will (approximately) hold for many controls.
• In case we have a priori information concerning the solution space of the system, we can say even more. 

This is given if P and Q are monotonicity Gramians according to Definitions 4.1 or 4.5, because of 
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(23) in Theorem 4.7. This estimate provides that we obtain a small state approximation error, i.e., 
x(t) ≈ Vkxk(t) for k ∈ {r, . . . , n − 1}, if the truncated HSVs σk+1, . . . , σn are of low order. In particular, 
we have Vk+1xk+1(t) ≈ Vkxk(t) since this is the error of just removing σk+1. Therefore, we can conclude 
that we need G−

Q and G+
P−1 to be mainly negative solely on sets of pairs (x, z) ∈ Rn × Rn with x ≈ z. 

In general, monotonicity Gramians do not ensure (42), but due to the continuity of f , we can say that

E

T∫
0

G−
Q

(
Vkxk(s), Vk−1xk−1(s)

)
ec(T−s) ds ≈ E

T∫
0

G−
Q

(
Vkxk(s), Vkxk(s)

)
ec(T−s) ds = 0,

E

T∫
0

G+
P−1

(
Vkxk(s), Vk−1xk−1(s)

)
ec(T−s) ds ≈ E

T∫
0

G+
P−1

(
Vkxk(s), Vkxk(s)

)
︸ ︷︷ ︸

= 4GP−1
(
Vkxk(s)

)
ec(T−s) ds.

Now, the monotonicity gap GP−1 defined in (17) is non-positive on average for u ∈ U by construction of 
the average monotonicity Gramian P . This ensures that the bound of Corollary 6.2 might still deliver 
a reasonable error criterion although it does not hold.

Proof of Theorem 6.1. We introduce x−(t) := xk(t) −
[
xk−1(t)

0

]
and x+(t) := xk(t) +

[
xk−1(t)

0

]
, for which 

the dynamics are obtained by subtracting/adding (39) and (41), i.e.,

dx−(t) = [Akx−(t) +
[

0
v0(t)

]
+ fk(xk(t)) − fk

([
xk−1(t)

0

])]dt +
d∑

i=1

[
Nk,ix−(t−) +

[
0

vi(t−)

] ]
dMi(t), (43)

dx+(t) = [Akx+(t) + 2Bku(t) −
[

0
v0(t)

]
+ fk(xk(t)) + fk

([
xk−1(t)

0

])]dt +
d∑

i=1

[
Nk,ix+(t−) −

[
0

vi(t−)

] ]
dMi(t).

(44)

Recalling that Σk = diag(σ1, . . . , σk) denotes the diagonal matrix of the k largest HSVs of the original 
system, we know, by Proposition 5.1, that Σn satisfies (13) and (14) with the balanced realization (35). 
Evaluating the left upper k × k block of the equations associated to Σn, we obtain

(Ak + c1I)�Σ−1
k + Σ−1

k (Ak + c1I) +
d∑

i,j=1
N�

k,iΣ−1
k Nk,jkij ≤ −Σ−1

k BkB
�
k Σ−1

k , (45)

(Ak + c1I)�Σk + Σk(Ak + c1I) +
d∑

i,j=1
N�

k,iΣkNk,jkij ≤ −C�
k Ck. (46)

Taking (43) into account, Lemma A.1 is applied to Σ
1
2
k x−(t) to obtain

d

dt
E
[
x−(t)�Σkx−(t)

]
=2E

[
x−(t)�Σk[Akx−(t) +

[
0

v0(t)

]
+ fk(xk(t)) − fk

([
xk−1(t)

0

])]]

+
d∑

i,j=1
E
[(
Nk,ix−(t) +

[
0

vi(t)

] )�Σk

(
Nk,jx−(t) +

[
0

vj(t)

] )]
kij .

Integrating this equation over [0, t] with t ≤ T yields
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E
[
x−(t)�Σkx−(t)

]
= E

t∫
0

x−(s)�
(
A�

k Σk + ΣkAk +
d∑

i,j=1
N�

k,iΣkNk,jkij

)
x−(s)ds

+ 2E
t∫

0

x−(s)�Σk

[
fk(xk(s)) − fk

([
xk−1(s)

0

])]
ds + R−(t),

where R−(t) = E 
∫ t

0 2x−(s)�Σk

[
0

v0(s)

]
+

∑d
i,j=1

(
2Nk,ix−(s) +

[
0

vi(s)

])�
Σk

[
0

vj(s)

]
kijds. Let xk,2 be 

the last entry of xk and hence also of x−. Moreover, nk,i shall denote the last line of Nk,i. There-

fore, we obtain that x−(s)�Σk

[
0

v0(s)

]
= σkxk,2(s)v0(s) and 

(
2Nk,ix−(s) +

[
0

vi(s)

])�
Σk

[
0

vj(s)

]
kij =

σk (2nk,ix−(s) + vi(s)) vj(s)kij . By construction of vi in (41), we have −2nk,i

[
xk−1(s)

0

]
+ 2vi(s) = 0, so 

that σk (2nk,ix−(s) + vi(s)) vj(s)kij = σk (2nk,ixk(s) − vi(s)) vj(s)kij . Therefore, it holds that

R−(t) ≤ σkE

t∫
0

2xk,2(s)v0(s) +
d∑

i,j=1
(2nk,ixk(s) + vi(s)) vj(s)kijds

exploiting that 
∑d

i,j=1 vi(s)vj(s)kij ≥ 0, because K = (kij) is positive semidefinite. Hence,

E
[
x−(t)�Σkx−(t)

]
≤ E

t∫
0

x−(s)�
(
(Ak + c1I)�Σk + Σk(Ak + c1I) +

d∑
i,j=1

N�
k,iΣkNk,jkij

)
x−(s)ds

+ 2E
t∫

0

x−(s)�Σk

[
fk(xk(s)) − fk

([
xk−1(s)

0

])− c2x−(s)]ds

+ σkE

t∫
0

2xk,2(s)v0(s) +
d∑

i,j=1
(2nk,ixk(s) + vi(s)) vj(s)kijds

+ c

t∫
0

E
[
x−(s)�Σkx−(s)

]
ds.

We set Tk,−(t) := 2E 
∫ t

0 x−(s)�Σk

[
fk(xk(s)) − fk

([
xk−1(s)

0

])− c2x−(s)]ds and αk(t) := E 
∫ t

0 2xk,2(s)v0(s) +∑d
i,j=1 (2nk,ixk(s) + vi(s)) vj(s)kijds. Based on (46) combined with the definitions of the outputs in (39)

and (41), we have

E
[
x−(t)�Σkx−(t)

]
≤ −‖yk − yk−1‖2

L2
t
+ Tk,−(t) + σkαk(t) + c

t∫
0

E
[
x−(s)�Σkx−(s)

]
ds.

We obtain by (53) that

E

t∫
0

‖yk(s) − yk−1(s)‖2
2 ec(t−s) ds ≤

t∫
0

(
Ṫk,−(s) + σkα̇k(s)

)
ec(t−s) ds. (47)

Now, exploiting Lemma A.1 for the process Σ− 1
2x+(t) together with (44) yields
k
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E
[
x+(t)�Σ−1

k x+(t)
]

= E

t∫
0

x+(s)�
(
A�

k Σ−1
k + Σ−1

k Ak +
d∑

i,j=1
N�

k,iΣ−1
k Nk,jkij

)
x+(s)ds

+ 2E
t∫

0

x+(s)�Σ−1
k

[
fk(xk(s)) + fk

([
xk−1(s)

0

])]
ds

+ E

t∫
0

4x+(s)�Σ−1
k Bku(s)ds−R+(t),

where R+(t) = E 
∫ t

0 2x+(s)�Σ−1
k

[
0

v0(s)

]
+

∑d
i,j=1

(
2Nk,ix+(s) −

[
0

vi(s)

])�
Σ−1

k

[
0

vj(s)

]
kijds. We observe 

that x+(s)�Σ−1
k

[
0

v0(s)

]
= σ−1

k xk,2v0(s) and 
(
2Nk,ix+(s) −

[
0

vi(s)

])�
Σ−1

k

[
0

vj(s)

]
kij = σ−1

k (2nk,ix+(s) −
vi(s))vj(s)kij = σ−1

k (2nk,ixk(s) + vi(s))vj(s)kij telling us that R+(t) = σ−1
k αk(t). Defining Tk,+(t) :=

2E 
∫ t

0 x+(s)�Σ−1
k

[
fk(xk(s)) + fk

([
xk−1(s)

0

])− c2x+(s)]ds results in

E
[
x+(t)�Σ−1

k x+(t)
]

= E

t∫
0

x+(s)�
(
(Ak + c1I)�Σ−1

k + Σ−1
k (Ak + c1I) +

d∑
i,j=1

N�
k,iΣ−1

k Nk,jkij

)
x+(s)ds

+ Tk,+(t) + E

t∫
0

4x+(s)�Σ−1
k Bku(s)ds− σ−1

k αk(t) + c

t∫
0

E
[
x+(s)�Σ−1

k x+(s)
]
ds.

We exploit the estimate

4 ‖u(s)‖2
2 ≥ ‖2u(s)‖2

2 −
∥∥B�

k Σ−1
k x+(s) − 2u(s)

∥∥2
2

= −x+(s)�Σ−1
k BkB

�
k Σ−1

k x+(s) + 4x+(s)�Σ−1
k Bku(s)

and insert (45) in order to find

E
[
x+(t)�Σ−1

k x+(t)
]
≤ 4 ‖u‖2

L2
t
+ Tk,+(t) − σ−1

k αk(t) + c

t∫
0

E
[
x+(s)�Σ−1

k x+(s)
]
ds.

We apply (53) providing

t∫
0

α̇k(s) ec(t−s) ds ≤ σk

t∫
0

(
Ṫk,+(s) + 4E ‖u(s)‖2

2
)
ec(t−s) ds.

Combining this with (47) leads to

E

t∫
0

‖yk(s) − yk−1(s)‖2
2 ec(t−s) ds ≤

t∫
0

[
Ṫk,−(s) + σ2

k

(
Ṫk,+(s) + 4E ‖u(s)‖2

2
)]

ec(t−s) ds.

The last step is to find different representations for Tk,− and Tk,+ inserting the definitions of x+ and x−. 
We recall that fk(xk) := f̃k(

[ xk

0n−k

]
), xk ∈ Rk and 0n−k ∈ Rn−k by (38). Since f̃k are the first k entries of 

the balanced nonlinearity fn, we have
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(
xk(s) ±

[
xk−1(s)

0

])�Dk
[
fk(xk(s)) ± fk

([ xk−1(s)
0

])− c2
(
xk(s) ±

[
xk−1(s)

0

])]
=

([ xk(s)
0n−k

]
±
[

xk−1(s)
0n−k+1

])�Dn
[
fn(

[
xk(s)
0n−k

]
) ± fn

([ xk−1(s)
0n−k+1

])− c2
([ xk(s)

0n−k

]
±
[

xk−1(s)
0n−k+1

])]
,

where Dk ∈ {Σk, Σ−1
k }. By Proposition 5.1 and (35), we know that Σn = S−�QS−1, Σ−1

n = S−�P−1S−1

and fn = Sf(S−1·). Moreover, S−1
[

xk(s)
0n−k

]
= Vkxk(s), since Vk are the first k columns of the inverse S−1 of 

the balancing transformation. Hence,

Tk,−(t) = 2E
t∫

0

G−
Q

(
Vkxk(s), Vk−1xk−1(s)

)
ds, Tk,+(t) = 2E

t∫
0

G+
P−1

(
Vkxk(s), Vk−1xk−1(s)

)
ds

according to the definition of the one-sided Lipschitz gaps in (32). This concludes the proof using (40) and 
setting t = T . �
7. Numerical experiments

Below, let L > 0 defining a “step size” parameter h := L
(n+1) . Based on this, we introduce a grid by 

ζj = jh for j = 0, 1, . . . , n + 1. Now, we mainly focus on an example for (3) that is given by

dx1(t) =
[x2(t) − 2x1(t)

h2 + u1(t)
h2 + f(x1(t))

]
dt +

d∑
i=1

gi(ζ1)x1(t−)dMi(t),

dxj(t) =
[xj+1(t) − 2xj(t) + xj−1(t)

h2 + f(xj(t))
]
dt +

d∑
i=1

gi(ζj)xj(t−)dMi(t),

dxn(t) =
[−2xn(t) + xn−1(t)

h2 + u2(t)
h2 + f(xn(t))

]
dt +

d∑
i=1

gi(ζn)xn(t−)dMi(t)

(48)

for j ∈ {2, . . . , n −1}. We have that u =
[ u1
u2

]
(m = 2) and f(x) = [ f(x1) ... f(xn) ]�, where f and gi are scalar 

functions. Formally, (48) can be interpreted as a finite difference discretization of the stochastic reaction 
diffusion equation

dvt(ζ) =
[ ∂2

∂ζ2 vt(ζ) + f
(
vt(ζ)

)]
+

d∑
i=1

gi(ζ)vt−(ζ)dMi(t), ζ ∈ (0, L), t ∈ (0, T ),

v0(ζ) ≡ 0, vt(0) = u1(t) and vt(L) = u2(t),

(49)

with controlled boundaries and the intuition that xj(t) ≈ vt(ζj). Let us specify the other parameter and the 

noise profile. Below, M is a Wiener process in dimension d = 2 with covariance K =
[

1 −0.5
−0.5 1

]
and n = 100. 

We study the nonlinearities f(v) = (1 + a)v2 − v3 − av with a = 0.1 and f(v) = v − v3, so that f = f (1) or 
f = f (2) introduced in Example 2.1. The particular noise scaling functions are g1(ζ) = 4 sin(ζ) and g2(ζ) =
4 cos(ζ). Moreover, the terminal time is T = 1 and the quantity of interest shall be the following average:

y(t) = 1
n

n∑
j=1

xj(t). (50)

For illustration we show two typical paths of (50) for f = f (1), f (2) and two different inputs in Figs. 2
and 3.
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Fig. 2. Path of (50) with f = f(1) and u = ũ in (51). Fig. 3. Path of (50) with f = f(2) and u = û in (51).

For f = f (2), we know that (12) holds with X = I and c2 ≥ cf = 1. Further, we observe that (11)
is true for X = I and c1 = cf = 1. Therefore, the system is globally mean square asymptotically stable 
according to Theorem 3.3 and the concept of monotonicity Gramians with c1 = c2 = 1 is well-defined by 
Proposition 4.2. We can even guarantee the existence of a one-sided Lipschitz Gramian by Proposition 4.15
since the one-sided Lipschitz condition (30) holds with cf = 1 using Example 4.10. The choice of f = f (2)

also yields a mean square asymptotically stable system since (11) particularly holds for X = I if c1 = cf =
(a−1)2

4 = 0.20250 is used and since we know, by Example 2.1, that (12) is true setting X = I and c2 ≥ cf . 
Therefore, monotonicity Gramians also exist here for c1 = c2 = 0.20250. On the other hand, a one-sided 
Lipschitz Gramian Q exists with c1 = c2 = a2−a+1

3 = 0.303̄ due to Proposition 4.15 (X = I) exploiting 
Example 4.11. The same example, however, indicates that P might not be available as a one-sided Lipschitz 
Gramian.

The goal of this section is to construct average monotonicity Gramians P and Q according to Definition 4.5
for a large set of controls U. In detail, we choose the monotonicity/one-sided Lipschitz constant to define 
c1 = c2 = 1 for f = f (2) and we set c1 = c2 = 0.303̄ for f = f (1) which is a number dominating the 
monotonicity constant 0.20250. Consequently, Theorems 4.7 and 6.1 hold for c = 0. We choose Q to be 
the solution to the equality in (14) and P the candidate with minimal trace satisfying (13). We refer to 
Section 4.3 for the particular computation strategy. We observe that these P and Q do not satisfy (15) for 
all x ∈ Rn but for the essential ones. In fact, we run experiments for a large variety of controls involving 
increasing, decreasing and (highly) oscillating u as well as a combination of all of them. In all cases, conditions 
(18) and (19) were fulfilled indicating that these P and Q are average monotonicity Gramians for a large 
set of controls U ⊂ L2

T . We present the experiments solely for two representatives ũ, ̂u ∈ U which are given 
by

ũ(t) =
[
−3 cos(20t)
2 sin(10t)

]
and û(t) =

[
−3 e−t

2
√
t

]
. (51)

These are chosen since they also steer the state x(t) to regions of Rn, where the monotonicity conditions 
in (15) are violated. The constructed monotonicity Gramians have the advantage that the HSVs provide a 
reliable criterion for the reduction error according to Theorem 4.7. Here, we have c = 0. We depict these 
algebraic values for f = f (1) in Fig. 4 and observe a strong decay telling us that we can expect a low 
approximation error for small r. The HSVs for f = f (2) behave very similarly and are therefore omitted. 
As discussed in Remark 6.3, we cannot expect the bound in Corollary 6.2 (with c = 0) to hold if average 
monotonicity Gramians are used. However, we expect the error to not be far from this bound, since the 
one-sided Lipschitz gaps G+

−1 and G−
Q in Theorem 6.1 are expected to be small when they are positive. 
P
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Fig. 4. Logarithmic HSVs based on monotonicity Gramians for f = f (1) with c1 = c2 = 0.303̄, where Q satisfies the equality in (14)
and P is the minimal trace solution of (13).

Table 1
Relative output error dimension reduc-
tion with controls in (51) and f = f(1).

‖y − yr‖L2
T
/ ‖y‖L2

T
for f = f(1)

r u = ũ u = û

3 4.4077e−02 3.8041e−02
6 4.0903e−03 3.7334e−03
10 3.1233e−04 2.5745e−04
20 2.7327e−07 3.5013e−07

Table 2
Relative error criterion of Corollary 6.2 with c = 0
and f = f(1).

2
∑n

k=r+1 σk ‖u‖L2
T
/ ‖y‖L2

T
for f = f(1)

r u = ũ u = û

3 1.0240e−01 1.8031e−01
6 8.6029e−03 1.5112e−02
10 4.6198e−04 8.1347e−04
20 1.3487e−07 2.3709e−07

Table 3
Relative output error dimension reduc-
tion with controls in (51) and f = f(2).

‖y − yr‖L2
T
/ ‖y‖L2

T
for f = f(2)

r u = ũ u = û

3 4.3380e−02 3.5840e−02
6 3.7409e−03 2.9983e−03
10 3.1507e−04 2.3924e−04
20 1.8514e−07 3.8720e−07

Table 4
Relative error criterion of Corollary 6.2 with c = 0
and f = f(2).

2
∑n

k=r+1 σk ‖u‖L2
T
/ ‖y‖L2

T
for f = f(2)

r u = ũ u = û

3 1.0494e−01 1.6369e−01
6 7.2186e−03 1.3624e−02
10 4.7378e−04 7.3326e−04
20 1.3493e−07 2.1019e−07

We compute the output yr of the reduced order model (7) introduced in Section 5 for different reduced 
dimensions r = 3, 6, 10, 20. The relative output error for f = f (1) can be found in Table 1 for the controls 
ũ and û. We observe a decreasing behavior for growing r yielding a very high accuracy for r ≥ 6. Table 2
shows the bound of Corollary 6.2 which generally is no upper bound for the error calculated in Table 1, 
see the case of r = 20. This is because the one-sided Lipschitz gaps are not always non-positive. However, 
2 
∑n

k=r+1 σk is close to the actual error. This is an observation made also in additional simulations that are 
not presented here. The intuition for 2 

∑n
k=r+1 σk being an upper bound for dimensions r = 3, 6, 10 but not 

for r = 20 might be the low order of a positive one-sided Lipschitz gap. For that reason, it becomes only 
visible when 2 

∑n
k=r+1 σk is very small. We repeat the error calculations for f = f (2) and obtain basically 

the same results, see Tables 3 and 4. This is due to a similar path behavior of y for both nonlinearities 
f (1) and f (2). Let us finally mention that we conducted the same experiments also when the right Dirichlet 
boundary condition in (49) is replaced by the Neumann condition ∂ vt(ζ)|ζ=L = u2(t) leading to
∂ζ



26 M. Redmann / J. Math. Anal. Appl. 535 (2024) 128133
dxn(t) =
[−xn(t) + xn−1(t)

h2 + u2(t)
h

+ f(xn(t))
]
dt +

d∑
i=1

gi(ζn)xn(t)dMi(t)

instead of the last line in (48). Here, analog results can be seen using the same kind of parameters.
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Appendix A. Supporting lemmas

This section contains several useful auxiliary results.

Lemma A.1. Suppose that a, b1, . . . , bd are Rn-valued processes with a being (Ft)-adapted and almost 
surely Lebesgue integrable and bi being integrable w.r.t. the mean zero square integrable Lévy process 
M = [M1 . . . Md ]� with covariance matrix K = (kij). If x is represented by

dx(t) = a(t)dt + b(t)dM = a(t)dt +
d∑

i=1
bi(t)dMi,

where b = [b1 . . . bd ]. Then, we have

d

dt
E
[
x(t)�x(t)

]
= 2E

[
x(t)�a(t)

]
+ E

∥∥∥b(t)K 1
2

∥∥∥2

F
= 2E

[
x(t)�a(t)

]
+

d∑
i,j=1

E
[
bi(t)�bj(t)

]
kij .

Proof. A proof is given in [30, Lemma 5.2]. �
We introduce two classical versions of Gronwall’s lemma below.

Lemma A.2 (Gronwall lemma – differential form). Given T > 0 let z : [0, T ] → R be differentiable functions 
and β ∈ R. Given that

ż(t) ≤ βz(t), t ∈ [0, T ],

then for all t ∈ [0, T ], it holds that

z(t) ≤ z(0) eβt .

The corresponding integral version follows next.

Lemma A.3 (Gronwall lemma – integral form). Given T > 0 let z, α : [0, T ] → R be continuous functions 
and β ≥ 0. Given that

z(t) ≤ α(t) +
t∫

0

βz(s)ds, t ∈ [0, T ],
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then for all t ∈ [0, T ], it holds that

z(t) ≤ α(t) +
t∫

0

α(s)β eβ(t−s) ds. (52)

If α further is absolutely continuous, we have

z(t) ≤ α(0) eβt +
t∫

0

α̇(s) eβ(t−s) ds, (53)

where α̇ is the derivative of α Lebesgue almost everywhere.

Proof. The first part is a very classical result and is not proved here. Given that α is absolutely continuous, 
we can apply integration by parts yielding

t∫
0

α(s)β eβ(t−s) ds = −α(s) eβ(t−s) ∣∣t
0 +

t∫
0

α̇(s) eβ(t−s) ds.

Hence, we obtain (53) from (52). �
Appendix B. Proof of Theorem 3.3

We define

−Y := (A + c1I)�X + X(A + c1I) +
d∑

i,j=1
N�

i XNjkij < 0. (54)

We apply Lemma A.1 to the uncontrolled process X 1
2x(t) and obtain

d

dt
E
[
x(t)�Xx(t)

]
= 2E

[
x(t)�X[Ax(t) + f(x(t))]

]
+

d∑
i,j=1

E
[
x(t)�N�

i XNjx(t)
]
kij

≤ 2E
[
x(t)�X[Ax(t) + c2Ix(t)]

]
+

d∑
i,j=1

E
[
x(t)�N�

i XNjx(t)
]
kij

= E

[
x(t)�

(
(A + c1I)�X + X(A + c1I) +

d∑
i,j=1

N�
i XNjkij

)
x(t)

]

+ 2(c2 − c1)E
[
x(t)�Xx(t)

]
= 2(c2 − c1)E

[
x(t)�Xx(t)

]
− E

[
x(t)�Y x(t)

]
exploiting inequality (12) and inserting (54). We define k and k to be the smallest the largest eigenvalue of 
X, respectively, yielding kI ≤ X ≤ kI. With the smallest eigenvalue kY of Y giving −Y ≤ −kY I, we obtain 
−E 

[
x(t)�Y x(t)

]
≤ −kY E 

[
x(t)�x(t)

]
≤ −kY

k
E 
[
x(t)�Xx(t)

]
. Setting β := kY

k
, we hence find

d

dt
E
[
x(t)�Xx(t)

]
≤ (2(c2 − c1) − β)E

[
x(t)�Xx(t)

]
.
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By the differential version of Gronwall’s inequality in Lemma A.2, we have

E
[
x(t)�x(t)

]
≤ 1

k
E
[
x�(t)Xx(t)

]
≤ 1

k
x�

0 Xx0 exp {(2(c2 − c1) − β)t}

≤ k

k
x�

0 x0 exp {(2(c2 − c1) − β)t}

concluding the proof. �
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