Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/92705
Titel: Implicit modeling of patient-specific aortic dissections with elliptic fourier descriptors
Autor(en): Mistelbauer, Gabriel
Rössl, Christian
Bäumler, K.
Preim, BernhardIn der Gemeinsamen Normdatei der DNB nachschlagen
Fleischmann, D.
Erscheinungsdatum: 2021
Art: Artikel
Sprache: Englisch
URN: urn:nbn:de:gbv:ma9:1-1981185920-946616
Schlagwörter: Human-centered computing
Scientific visualization
Health informatics
Parametric curve and surface models
Zusammenfassung: Aortic dissection is a life-threatening vascular disease characterized by abrupt formation of a new flow channel (false lumen) within the aortic wall. Survivors of the acute phase remain at high risk for late complications, such as aneurysm formation, rupture, and death. Morphologic features of aortic dissection determine not only treatment strategies in the acute phase (surgical vs. endovascular vs. medical), but also modulate the hemodynamics in the false lumen, ultimately responsible for late complications. Accurate description of the true and false lumen, any communications across the dissection membrane separating the two lumina, and blood supply from each lumen to aortic branch vessels is critical for risk prediction. Patient-specific surface representations are also a prerequisite for hemodynamic simulations, but currently require time-consuming manual segmentation of CT data. We present an aortic dissection cross-sectional model that captures the varying aortic anatomy, allowing for reliable measurements and creation of high-quality surface representations. In contrast to the traditional spline-based cross-sectional model, we employ elliptic Fourier descriptors, which allows users to control the accuracy of the cross-sectional contour of a flow channel. We demonstrate (i) how our approach can solve the requirements for generating surface and wall representations of the flow channels, (ii) how any number of communications between flow channels can be specified in a consistent manner, and (iii) how well branches connected to the respective flow channels are handled. Finally, we discuss how our approach is a step forward to an automated generation of surface models for aortic dissections from raw 3D imaging segmentation masks.
URI: https://opendata.uni-halle.de//handle/1981185920/94661
http://dx.doi.org/10.25673/92705
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-NC-ND 4.0) Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International(CC BY-NC-ND 4.0) Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International
Sponsor/Geldgeber: Projekt DEAL 2021
Journal Titel: Computer graphics forum
Verlag: Wiley-Blackwell
Verlagsort: Oxford
Band: 40
Heft: 3
Originalveröffentlichung: 10.1111/cgf.14318
Seitenanfang: 423
Seitenende: 434
Enthalten in den Sammlungen:Fakultät für Informatik (OA)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Mistelbauer et al._Implicit Modeling_2021.pdfZweitveröffentlichung10.25 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen