Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/92266
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSchulz, Michael-
dc.contributor.authorNeuhaus, Uwe-
dc.contributor.authorKaufmann, Jens-
dc.contributor.authorBadura, Daniel-
dc.contributor.authorKühnel, Stephan-
dc.contributor.authorBadewitz, Wolfgang-
dc.contributor.authorDann, David-
dc.contributor.authorKloker, Simon-
dc.contributor.authorAlekozai, Emal M.-
dc.contributor.authorLanquillon, Carsten-
dc.date.accessioned2022-09-28T15:38:24Z-
dc.date.available2022-09-28T15:38:24Z-
dc.date.issued2020-11-
dc.date.submitted2020-11-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/94218-
dc.identifier.urihttp://dx.doi.org/10.25673/92266-
dc.description.abstractData-driven disciplines like data mining and knowledge management already provide process-based frameworks for data analysis projects, such as the well-known cross-industry standard process for data mining (CRISP-DM) or knowledge discovery in databases (KDD). Although the domain of data science addresses a much broader problem space, i.e., also considers economic, social, and ecological impacts of data-driven projects, a corresponding domain-specific process model is still missing. consequently, based on a total of four identified meta requirements and 17 corresponding requirements that were collected from experts of theory and practice, this contribution proposes the empirically grounded data science process model (DASC-PM)—a framework that maps a data science project as a four-step process model and contextualizes it among scientific procedures, various areas of application, IT infrastructures, and impacts. To illustrate the phase-oriented specification capabilities of the DASCPM, we exemplarily present competence and role profiles for the analysis phase of a data science project.eng
dc.language.isoeng-
dc.publisherUniversitäts- und Landesbibliothek Sachsen-Anhalt-
dc.relation.isreferencedbyhttp://dx.doi.org/10.25673/91094-
dc.relation.isreferencedbyhttp://dx.doi.org/10.25673/85296-
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/-
dc.subjectData Scienceeng
dc.subjectProcess Modeleng
dc.subjectProcedure Modeleng
dc.subjectCompetencieseng
dc.subjectRoleseng
dc.subject.ddcDDC::0** Informatik, Informationswissenschaft, allgemeine Werke-
dc.subject.ddcData Science-
dc.titleIntroducing DASC-PM: A Data Science Process Model-
dc.typeConference Object-
local.versionTypepublishedVersion-
local.openaccesstrue-
local.accessrights.dnbfree-
Appears in Collections:Lehrstuhl für Betriebliches Informationsmanagement

Files in This Item:
File Description SizeFormat 
Introducing DASC-PM.pdf692.84 kBAdobe PDFThumbnail
View/Open