Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/86284
Titel: MaxRI : a method for discovering maximal rare itemsets
Autor(en): Darrab, Sadeq
Broneske, DavidIn der Gemeinsamen Normdatei der DNB nachschlagen
Saake, GunterIn der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2021
Art: Konferenzobjekt
Sprache: Englisch
URN: urn:nbn:de:gbv:ma9:1-1981185920-882376
Schlagwörter: Rare itemsets
Representative rare itemsets
Maximal rare itemsets
Zusammenfassung: Rare itemset mining got extensive attention due to its high importance in real-life applications. Rare itemset mining methods aim at discovering the whole set of rare itemsets in a dataset. Although current algorithms perform reasonably well in finding interesting rare itemsets, they also reveal a large number of rare itemsets, including redundant ones. As a result, skimming through these massive amounts of (partly redundant) itemsets is a big overhead in many applications. On the other hand, generating a massive number of rare itemsets also compromises the performance of algorithms in terms of time and memory. To address these limitations, we propose an efficient algorithm called maximal rare itemset (MaxRI) to discover maximal rare patterns (long rare itemset). Then, we propose another method RRI (Recover Rare Itemsets from maximal rare itemsets) to retrieve the interesting subset of rare itemsets of a user-given length, k, from the set of maximal rare itemsets. To the best of our knowledge, this is the first paper proposed for rare itemset mining by considering the representative rare patterns without redundant ones. Our experimental results indicate that our proposed methods’ performance is better than the up-to-date algorithms in terms of time and memory consumption.
URI: https://opendata.uni-halle.de//handle/1981185920/88237
http://dx.doi.org/10.25673/86284
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Sponsor/Geldgeber: Transformationsvertrag
Enthalten in den Sammlungen:Fakultät für Informatik (OA)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Darrab et al._MaxRI_2021.pdfZweitveröffentlichung633.9 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen