Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/85742
Title: Hybrid semi-parametric modeling in separation processes : a review
Author(s): McBride, Kevin
Sanchez Medina, Edgar Ivan
Sundmacher, KaiLook up in the Integrated Authority File of the German National Library
Issue Date: 2020
Type: Article
Language: English
URN: urn:nbn:de:gbv:ma9:1-1981185920-876948
Subjects: Chemical separation
Hybrid modeling
Machine learning
Thermodynamics
Abstract: Separations of mixtures play a critical role in chemical industries. Over the last century, the knowledge in the area of chemical thermodynamics and modeling of separation processes has been substantially expanded. Since the models are still not completely accurate, hybrid models can be used as an alternative that allows to retain existing knowledge and augment it using data. This paper explores some of the weaknesses in the current knowledge in separations design, simulation, optimization, and operation, and presents many examples where data-driven and hybrid models have been used to facilitate these tasks.
URI: https://opendata.uni-halle.de//handle/1981185920/87694
http://dx.doi.org/10.25673/85742
Open Access: Open access publication
License: (CC BY-NC 4.0) Creative Commons Attribution NonCommercial 4.0(CC BY-NC 4.0) Creative Commons Attribution NonCommercial 4.0
Sponsor/Funder: Projekt DEAL 2020
Journal Title: Chemie - Ingenieur - Technik
Publisher: Wiley-VCH Verl.
Publisher Place: Weinheim
Volume: 92
Issue: 7
Original Publication: 10.1002/cite.202000025
Page Start: 842
Page End: 855
Appears in Collections:Fakultät für Verfahrens- und Systemtechnik (OA)

Files in This Item:
File Description SizeFormat 
McBride et al._Hybrid Semi‐parametric_2020.pdfZweitveröffentlichung320.13 kBAdobe PDFThumbnail
View/Open