Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/85742
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMcBride, Kevin-
dc.contributor.authorSanchez Medina, Edgar Ivan-
dc.contributor.authorSundmacher, Kai-
dc.date.accessioned2022-05-10T12:59:14Z-
dc.date.available2022-05-10T12:59:14Z-
dc.date.issued2020-
dc.date.submitted2020-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/87694-
dc.identifier.urihttp://dx.doi.org/10.25673/85742-
dc.description.abstractSeparations of mixtures play a critical role in chemical industries. Over the last century, the knowledge in the area of chemical thermodynamics and modeling of separation processes has been substantially expanded. Since the models are still not completely accurate, hybrid models can be used as an alternative that allows to retain existing knowledge and augment it using data. This paper explores some of the weaknesses in the current knowledge in separations design, simulation, optimization, and operation, and presents many examples where data-driven and hybrid models have been used to facilitate these tasks.eng
dc.description.sponsorshipProjekt DEAL 2020-
dc.language.isoeng-
dc.relation.ispartof10.1002/(ISSN)1522-2640-
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/-
dc.subjectChemical separationeng
dc.subjectHybrid modelingeng
dc.subjectMachine learningeng
dc.subjectThermodynamicseng
dc.subject.ddc660-
dc.titleHybrid semi-parametric modeling in separation processes : a revieweng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-876948-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleChemie - Ingenieur - Technik-
local.bibliographicCitation.volume92-
local.bibliographicCitation.issue7-
local.bibliographicCitation.pagestart842-
local.bibliographicCitation.pageend855-
local.bibliographicCitation.publishernameWiley-VCH Verl.-
local.bibliographicCitation.publisherplaceWeinheim-
local.bibliographicCitation.doi10.1002/cite.202000025-
local.openaccesstrue-
dc.identifier.ppn1701992639-
local.bibliographicCitation.year2020-
cbs.sru.importDate2022-05-10T12:56:03Z-
local.bibliographicCitationEnthalten in Chemie - Ingenieur - Technik - Weinheim : Wiley-VCH Verl., 1949-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Verfahrens- und Systemtechnik (OA)

Files in This Item:
File Description SizeFormat 
McBride et al._Hybrid Semi‐parametric_2020.pdfZweitveröffentlichung320.13 kBAdobe PDFThumbnail
View/Open