Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/71430
Title: | Finite element error estimates on geometrically perturbed domains |
Author(s): | Minakowski, Piotr Richter, Thomas |
Issue Date: | 2020 |
Type: | Article |
Language: | English |
URN: | urn:nbn:de:gbv:ma9:1-1981185920-733822 |
Subjects: | Perturbed domains Finite elements Error estimates |
Abstract: | We develop error estimates for the finite element approximation of elliptic partial differential equations on perturbed domains, i.e. when the computational domain does not match the real geometry. The result shows that the error related to the domain can be a dominating factor in the finite element discretization error. The main result consists of H1- and L2-error estimates for the Laplace problem. Theoretical considerations are validated by a computational example. |
URI: | https://opendata.uni-halle.de//handle/1981185920/73382 http://dx.doi.org/10.25673/71430 |
Open Access: | Open access publication |
License: | (CC BY 4.0) Creative Commons Attribution 4.0 |
Sponsor/Funder: | Projekt DEAL 2020 |
Journal Title: | Journal of scientific computing |
Publisher: | Springer Science + Business Media B.V. |
Publisher Place: | New York, NY [u.a.] |
Volume: | 84 |
Issue: | 2 |
Original Publication: | 10.1007/s10915-020-01285-y |
Page Start: | 1 |
Page End: | 19 |
Appears in Collections: | Fakultät für Mathematik (OA) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Minakowski et al._Finite_2020.pdf | Zweitveröffentlichung | 741.01 kB | Adobe PDF | View/Open |