Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/71430
Title: Finite element error estimates on geometrically perturbed domains
Author(s): Minakowski, PiotrLook up in the Integrated Authority File of the German National Library
Richter, ThomasLook up in the Integrated Authority File of the German National Library
Issue Date: 2020
Type: Article
Language: English
URN: urn:nbn:de:gbv:ma9:1-1981185920-733822
Subjects: Perturbed domains
Finite elements
Error estimates
Abstract: We develop error estimates for the finite element approximation of elliptic partial differential equations on perturbed domains, i.e. when the computational domain does not match the real geometry. The result shows that the error related to the domain can be a dominating factor in the finite element discretization error. The main result consists of H1- and L2-error estimates for the Laplace problem. Theoretical considerations are validated by a computational example.
URI: https://opendata.uni-halle.de//handle/1981185920/73382
http://dx.doi.org/10.25673/71430
Open Access: Open access publication
License: (CC BY 4.0) Creative Commons Attribution 4.0(CC BY 4.0) Creative Commons Attribution 4.0
Sponsor/Funder: Projekt DEAL 2020
Journal Title: Journal of scientific computing
Publisher: Springer Science + Business Media B.V.
Publisher Place: New York, NY [u.a.]
Volume: 84
Issue: 2
Original Publication: 10.1007/s10915-020-01285-y
Page Start: 1
Page End: 19
Appears in Collections:Fakultät für Mathematik (OA)

Files in This Item:
File Description SizeFormat 
Minakowski et al._Finite_2020.pdfZweitveröffentlichung741.01 kBAdobe PDFThumbnail
View/Open