Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/71430
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorMinakowski, Piotr-
dc.contributor.authorRichter, Thomas-
dc.date.accessioned2022-03-01T13:04:48Z-
dc.date.available2022-03-01T13:04:48Z-
dc.date.issued2020-
dc.date.submitted2020-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/73382-
dc.identifier.urihttp://dx.doi.org/10.25673/71430-
dc.description.abstractWe develop error estimates for the finite element approximation of elliptic partial differential equations on perturbed domains, i.e. when the computational domain does not match the real geometry. The result shows that the error related to the domain can be a dominating factor in the finite element discretization error. The main result consists of H1- and L2-error estimates for the Laplace problem. Theoretical considerations are validated by a computational example.eng
dc.description.sponsorshipProjekt DEAL 2020-
dc.language.isoeng-
dc.relation.ispartofhttp://link.springer.com/journal/10915-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectPerturbed domainseng
dc.subjectFinite elementseng
dc.subjectError estimateseng
dc.subject.ddc510.72-
dc.titleFinite element error estimates on geometrically perturbed domainseng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-733822-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleJournal of scientific computing-
local.bibliographicCitation.volume84-
local.bibliographicCitation.issue2-
local.bibliographicCitation.pagestart1-
local.bibliographicCitation.pageend19-
local.bibliographicCitation.publishernameSpringer Science + Business Media B.V.-
local.bibliographicCitation.publisherplaceNew York, NY [u.a.]-
local.bibliographicCitation.doi10.1007/s10915-020-01285-y-
local.openaccesstrue-
dc.identifier.ppn1734676493-
local.bibliographicCitation.year2020-
cbs.sru.importDate2022-03-01T13:00:55Z-
local.bibliographicCitationEnthalten in Journal of scientific computing - New York, NY [u.a.] : Springer Science + Business Media B.V., 1986-
local.accessrights.dnbfree-
Enthalten in den Sammlungen:Fakultät für Mathematik (OA)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Minakowski et al._Finite_2020.pdfZweitveröffentlichung741.01 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen