Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/62595
Title: | Permutations on finite fields with invariant cycle structure on lines |
Author(s): | Gerike, Daniel Kyureghyan, Gohar M. |
Issue Date: | 2020 |
Type: | Article |
Language: | English |
URN: | urn:nbn:de:gbv:ma9:1-1981185920-645461 |
Subjects: | Permutation polynomials Cycle structure Switching construction Subspaces |
Abstract: | We study the cycle structure of permutations F(x) = x+γ f (x) onFqn,where f : Fqn → Fq . We show that for a 1-homogeneous function f the cycle structure of F can be determined by calculating the cycle structure of certain induced mappings on parallel lines of γ Fq. Using this observation we describe explicitly the cycle structure of two families of permutations over Fq2 : x + γ Tr(x2q−1), where q ≡ −1 (mod 3) and γ ∈ Fq2 , with γ 3 = − 1 27 and x + γ Tr x 22s−1+3·2s−1+1 3 , where q = 2s , s odd and γ ∈ Fq2 , with γ (q+1)/3 = 1. |
URI: | https://opendata.uni-halle.de//handle/1981185920/64546 http://dx.doi.org/10.25673/62595 |
Open Access: | Open access publication |
License: | (CC BY 4.0) Creative Commons Attribution 4.0 |
Sponsor/Funder: | Projekt DEAL 2020 |
Journal Title: | Designs, codes and cryptography |
Publisher: | Springer Science + Business Media B.V |
Publisher Place: | Dordrecht [u.a.] |
Volume: | 88 |
Original Publication: | 10.1007/s10623-020-00721-2 |
Page Start: | 1723 |
Page End: | 1740 |
Appears in Collections: | Fakultät für Mathematik (OA) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Gerike et al._Permutations_2020.pdf | Zweitveröffentlichung | 311.2 kB | Adobe PDF | View/Open |