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Abstract

We study the cycle structure of permutations F'(x) = x+y f(x) on[Fyn, where f : Fyn — F,.
We show that for a 1-homogeneous function f the cycle structure of F' can be determined by
calculating the cycle structure of certain induced mappings on parallel lines of yF,. Using
this observation we describe explicitly the cycle structure of two families of permutations
over Foo: x + y Tr(x24~1), where ¢ = —1 (mod 3) and y € Fg2, with Yy = —% and

22571430514 s . G+)/3
x+yTr|x 3 ,Whereq=2,soddandye]qu,wnhyq =1.
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A permutation can be expressed as a unique product of disjoint cycles (up to reordering).
The cycle decomposition of a permutation on a finite field provides information on both
algebraic as well as combinatorial properties of the permutation. Much of that information
is retained in the cycle structure of the permutation, which lists the lengths of the cycles
and their frequencies in the cycle decomposition. Two permutations have the same cycle
structure exactly if they lie in the same conjugacy class of the symmetric group. One of
the main current challenges in the research on permutations of finite fields is finding the
cycle structure for interesting families of permutation polynomials, and vice versa, given
a conjugacy class of the symmetric group over a finite field, find a nice member of it. At
present, the cycle structure is studied for very few families of permutation polynomials. In
[1] the cycle structure of monomials x* over IF, is determined. It directly depends on the
multiplicative order of the exponent k& modulo the divisors of ¢ — 1. In [10] formulas for
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the cycle structure of Dickson polynomials D, (x, a) with parameter a = 1 ora = —1
are given. The cycle structure of Dickson polynomials is similar to the cycle structure of
monomials. In [12] the cycle structure of g-linearized polynomials over Fy» is considered.
The authors give a formula for the cycle structure of the restriction of a linearized polynomial
to certain subspaces of IF;». Further they show how to combine these results to get the cycle
structure on the whole field. Applying this method to a given family of linearized permutation
polynomials is often challenging. However it can be used to compute the cycle structure of
an explicitly given linearized permutation polynomial using a computer algebra system, e. g.
SAGE or MAGMA. In [13] functional graphs of mappings of finite fields are considered.
This approach leads to a refinement of the results obtained in [12]. In [2] the authors show
that any permutation polynomial P, with Carlitz rank n can be written as P, = C, o Ry,
where C,, is a single cycle of length n and R,, is a Mobius transformation. They use this fact
to determine the cycle structure of permutation polynomials with low Carlitz rank.

In this paper we study the cycle structure of permutation polynomials of shape x + y f (x)
onlFyn, where y € IE‘Z,, and f : Fyn — F,. Inparticular we show thatif f is I-homogeneous,
then it suffices to consider the induced permutations on certain lines. We use this observation
to describe the cycle structure of two families of permutations on F 2: x + y Tr(x22~1),

3 1 22— ly308—14 s
whereg = —1 (mod 3),yeIF‘qz,y =—5andx+yTr|x 3 , where g = 2%,

soddand y € F,2, with y@tb/i3 =1,

1 Induced permutations on lines and subspaces

Let ¢ = p* with p a prime number and s € N. In this paper we consider Fy» as an F,-
vector space. Similarly all mentioned vector spaces are over F,. The following result is
straightforward.

Lemmal Let F(x) = x + y f(x), where f : Fyn — F, and y € Fyn. Then F maps every
line a + yFy, a € Fyn into itself.

Proof Leta + yu € a + yIF,, then
Fla+yu) =a+yutyflatyu)=a+yu+ fla+yu)ecatyF,.
So F maps a + yF, into itself. O
The next lemma shows that the converse of the above lemma is also true.

Lemma2 Lety € IF;". IfF : Fyn — Fyn maps every line a + yFy, a € Fyn into itself, then
F(x) = x + vy f(x) for an appropriate mapping f : Fgn — Fg.

Proof By assumption, for any « € [F» there exists a mapping f, : F, — F, such that
Flat+yuw) =a+yu+ fow) =a+yu+yfo(u)

for u € [F,;. Let now A be a system of representatives for the cosets of the line yF, in Fyn.
Then every x € Fyn can be uniquely written as o + yu witha € A,u € F;. Forx = o +yu
witha € A and u € IF; we define f(x) = u + f,(u). Then clearly

Fx)=Fla+yu)=a+yu+yfaw) =x+y[fx),
where f : Fyn — Fy, with f(x) = u + fo(u). O
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Remark 1 Let F(x) = x + y f(x), where f : Fyn — F, and y € IE‘Zn. Further let L be a
subspace of IF;» containing y. Then yF, € L and L = | J,¢; (« + yF,) is a union of cosets
of yF,. Hence any coset 8 + L = | J ¢, (@ + B + yFy). Since F maps any of those lines
into themselves it also maps any coset of L into itself.

As an immediate corollary of Lemma 1 we get the following result.

Theorem 1 Let F : Fgn — Fyn, F(x) = x +y f(x), where f : Fgn — Fy andy € Fp,.
Then F permutes Fn if and only if it permutes every line o + yF, with a € Fyn.

The next observation follows directly from Theorem 1.

Proposition 1 Let f : Fyn — Fyand y € IFZ,,. If F(x) = x + y f(x) is a permutation of
Fyn, then every cycle in its cycle decomposition has a length not exceeding q.

Let S4 denote the symmetric group of a set A. Two permutations ¥ : A — A and
7’ : B — Barecalled conjugate , if there exists abijectiong : A — B, withm = ¢~ 'on’0p.
The next well known fact is used often in the sequel.

Proposition2 Let A, B be finite sets with |A| = |B| and F € Sp and G € Sp. Then F
and G have the same cycle structure if and only if there exists a bijection ¢ : A — B, with
F=¢p"'0Goo.

Recall thatamapping g : Fyn — Fy is called homogeneous of degree 1 or 1-homogeneous,
if g(ux) = ug(x) for any u € F; and x € Fyn. Next we consider a special class of
permutations F(x) = x + y f(x), where f is homogeneous of degree 1. The following
theorem shows that the cycle structure of such permutations has an interesting regularity.

Theorem2 Let f : Fyn — T, be 1-homogeneous and y € F},. Further let L and M be
subspaces of Fyn suchthaty € L, L C M anddim(L) = dim(M) — 1. If F(x) = x+y f(x)
permutes Fyn, then F has the same cycle structure on all cosets m + L # L of L in M.

Proof Leta € M \ L be fixed. Then for any m € M \ L, the coset m + L can be represented
as af + L with 7 € Fj. By Remark 1, the mapping F' is a permutation on the coset o + L.
Letnow [/ € L. Then for a fixed ¢, we get

Fita+) =ta+1l+yfa+l)=ta+ Gi()

with G,(l) : L — L,G;(I) =1+ y f(ta+1).Since G,(I) = F(ta +1)—ta =t ' o For,
where t : L — ta + L, with (/) = [ + ta, Proposition 2 shows that G, (/) is a permutation
of L that has the same cycle structure as F' on ta + L. To complete the proof, it remains to
show, that the cycle structure of G; is independent of ¢. Since f is homogeneous of degree
1, we have

7 G ) =7 Wl 4y fGa +tD) = 7 @l + y f (o + 1))
=t tl+tyfla+D)=l+yfla+1) =G ).

This shows that G; and G are conjugate permutations in the symmetric group S; and
consequently have the same cycle structure. O

For the choice L = yF, and M any two dimensional subspace of F,» containing y,
Theorem 2 implies that the cycle structure of the permutation F(x) = x + y f(x) is the
same on all parallel lines m + yF; # y[F, contained in M. This is a key observation for
understanding the cycle structure of permutations of shape x + y f (x) which we summarize
in the following theorem.

@ Springer



1726 D. Gerike, G. M. Kyureghyan

Theorem 3 Let f : Fyn — F, be I-homogeneous and y € ]FZ,,‘ Suppose F(x) = x+y f(x)
is a permutation on Fyn. Then the following holds:

(@) If M is a two dimensional subspace of Fyn containing y, then the cycle structure of F
is the same on every line m + yF¥, # yFy lying in M.

(b) There are at most 1 + (¢"~' — 1)/(q — 1) lines in Fyn such that the cycle structure of
F is pairwise different on them.

Proof The statement follows from Theorem 2 with M of dimension 2 and the observation

n—1 -_— . . . . . . . .
that 4 — L is the number of pairwise different two dimensional subspaces containing y. We

need to consider the cycle structure of F on the line yF, separately. O

Remark 2 Example 1 shows that there are permutations x + y Tryn /4 (x*), for which there
exist two dimensional subspaces M of Fn, such that the cycle structure of F is not the same
on every line m + yIF, # yF, lyingin M.

The following permutations are from [8], they do not belong to a known infinite family.

Example1 Let g = 9, n = 3,k € {11,19} and y € F,, where y* = —1. Let F(x) =
x+y T, (x*). Then the cycle structure of F on yF, is 1°. And for the 80 lines [ || vFy,
[ # yFy, it holds, that

on 8 the cycle structure of F is 33,

on 36 the cycle structure of F is 1142,

on 36 the cycle structure of F is 1'8!.

Since a two dimensional subspace of Fg3, containing yFo, contains 8 further lines and 8 1 36,
there exists a two dimensional subspace of g3, containing yIF,, that contains at least two
lines with different cycle structures.

In the next sections we demonstrate applications of Theorem 3.

2 ThecaseF(x) =x + yTrq"/q(Xk)

In this section we consider the case f(x) = Tryn/q (x*) with k € N and Trgnsg : Fgn — Fy,
where Trgn /4 (x) = x +x9+---+ x4" " is the trace mapping. The study of permutations x +
y Trgnyq (x*) was originated in [3], where the complete characterization of such permutations
for ¢ = 2 is achieved. Several families of such permutations are found in [4,8,9,11]. In this
paper we concentrate on the cases n = 2 and n = 3. The currently known families of such
non-linear permutations for n = 2 and n = 3 are given in Theorem 4. Cases 1-5 for odd ¢
and cases 6, 16 and 17 are from [8]. Cases 1-5 for even ¢ and cases 7-14 are from [9]. Case
15 is from [11].

Theorem 4 The polynomial F(x) = x +y Tryn ), (x%Y is a permutation polynomial over [Fyn
in each of the following cases.

n=2g=1 (mod3),y =—1/3 k=2q—1,
n=2g¢=—1 (mod3),y>=—1/27, k=2q — 1,

Nk L=

n=2qg=1mod3),y=1k=(q*+q+1)/3
n=2q=0%0>0y=—1k=0%-0+1,
n=2¢g=0,0>0y=—-1k=0%+0*-0,
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1 (mod 4), 2) 4TV =1,k = (g + /4,

6.7!:2,q5

7. n=2,q=2° seveny _lk_(3q—2)(q +q+1)/3,

8. n=2¢g=2%sodd y3>=1k=3g%>—2)(q+4)/5

9. n=24q =72 ye]Fq,stx +x+y- 1halsnorootmIFq,k—22Y 243.2572
10. n =2, q =25, s—](mod3)y_1,k_(2q—1)(q+6)/7
11.n=2¢g=2,s=-1 (mod3),y =1 k=—(q*>—2)(q+6)/7,
12.n=2¢=2%sodd y9tV3 =1 k=¥ 1 +3.2571 1 1)/3,
13.n=2qg=2%seven y =1,k = (¢° —2q+4)/3

14. I’l:2,q:Q2 Q_zs VGFE k_24s 23s 1_’_225714_2571’
15. 1 =2¢=3,5>2y V2= (-1 D2 f=3%"1 43 _ 31,
16. n=3,qodd y =1, k= (g2 +1)/2
17.n=3,qgodd y =—1/2, k=¢*—q + L.

It can be easily seen that in all cases of Theorem 4 the integers k and n satisfy k = 1
(mod g — 1), implying.

Proposition 3 If ¢ and k appear in one of the cases of Theorem 4, then x* = x for any
x € IF,, and hence the function Tryn /4 (x%) is homogeneous of degree 1.

Consequently every permutation listed in Theorem 4 fulfills the conditions of Theorem 3.
Thus to determine the cycle structure of these permutations, it is enough to find the cycle
structure of the induced permutations on lines parallel to yF,. By Theorem 3(b), for n = 2
there are at most two lines with different cycle structure, and for n = 3 there are at most
q + 2 such lines. One of the lines for which we need to compute the cycle structure is y[F,.

Remark 3 Let F(x) = x + y Tryn/q (x*) be one of the cases appearing in Theorem 4. Then
the cycle structure of F' on yF, is easy to determine. Indeed, for any yu € y[F, it holds
F(yu) = y(1 + Trgnyq (y*))u, and hence the cycle containing yu has length equal to the
multiplicative order of (1 + Tryn/q (y%)) in Fy.

Note that in several of the cases listed in Theorem 4 there are multiple choices for y
defining permutations. However in some of these cases the choice of y does not impact the
cycle structure of permutations.

Proposition4 Let i € {2, 6,8, 12} be fixed and F; , be a permutation of IE‘qz described in
case i of Theorem 4. Further let y1, y» € ]Fqg be such, that F; ,,, and F; ,, are permutations.
Then F; y, and ¥, y, are conjugate in the symmetric group over 2 and hence they have the
same cycle structure. Further the cycle structure of F; ,, on y1F is the same as the cycle
structure of Fj y, on y»lFq and for any ay € F 2 \ yiFq, ar € F 2 \ 2y, the cycle structure
of Fi y, onay + y1Fy is the same as the cycle structure of F; , on az + y2Fy.

Since the proofs are similar, we present only a proof for case 2.

Proof F>,(x) = x + Y Trg2, (x24=1), where y3 = —2%. One possible choice for y is
—%. Set F*(x) = x — % Try2), (x24=1). In the following we proceed similar to the proof of
Theorem 3.2 from [8]. Let w := —3y, then @ =1 and consequently @*~! = 1. Then

1 _ _ 1 _
F (0x) = wx — ga)Trq2/q(a)2‘1 Ix20 1 = (x — 3 Trqz/q(xzq )

= wF*(x). ey
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1728 D. Gerike, G. M. Kyureghyan

This shows that F» , is a conjugate of F* for any y with y> = — 2]—7, that is the cycle structure

of F , is the same for every y, such that F> , is a permutation.

Since ¢ : F; — yFy, ¢(x) = wx is a bijection, (1) also shows, that the cycle structure
of F>, on yIF, is the same as the cycle structure of F* on IF,,.

Let fo € Fpo \ Fy be fixed and ap = wfo € Fpo \ yFy. Then ¢ : fo + F; —
ap + yFy, ¢o(x) = wx is one-to-one. Consequently (1) also shows, that the cycle structure
of 2, on ag + yIF, is the same as the cycle structure of F* on fy + IF,. By Theorem 3 for
any o € F 2\ yFy, the cycle structure of F3 ), on o + y F is the same as the cycle structure
of £, onap + yFy. These two facts together show that for any o € F 2 \ yFg, the cycle
structure of F> ,, on a + yF, is the same as the cycle structure of F* on By + F,. O

Tables 1 and 2 contain numerical results on the cycle structure on affine lines / parallel to
yFq and [ # yF, for permutations obtained by Theorem 4. Let m}'m5’ ... m"" denote the
cycle structure of a permutation with r cycles of length m1, rp cycles of length m>, ...and
ri cycles of length m;, where my < mp < --- < m;.

Recall that Theorem 3 shows that for n = 3, there are at most ¢ + 2 different kinds of
lines, where “different” means, that on those lines the considered permutation has different
cycle structures. One of those lines is y[F,, which we do not consider in the tables. So the
upper bound for different lines in the tables is g + 1. Observe that Table 2 shows in particular
that in cases 16 and 17 of Theorem 4 this upper bound g + 1 is not achieved. Instead for
g = 81 there are only 8 different lines in case 16, and 9 different lines in case 17; and for
g = 125 there are 9 different lines in case 16, and 14 different lines in case 17.

The cycle structures marked with s in Table 1 look particularly simple. Based on our
numerical results we believe that the following statements hold.

Conjecture Permutations listed in Theorem 4 fulfill:

1. For fixed q, the cycle structures of the permutations in case 1 are the same as the cycle
structures of the permutations in case 3.

2. Let F), be as described in case 9 and m be the largest integer with 2™ < s. Then there
exists an element y, such that F), has 25=ntD) eyeles of length 2™+ on every line
o+ yFy, wherea € F 2 \ yFy.

If2™ = s, then this is the case for y = 1. For this special case, we have a technical proof
which will be published in [5].

3. Let Fy, be as described in case 14. If 4 { s, then there exists an element y, such that F),
has 4 cycles of length 2°=2 on every line o + yFq, wherea € F 2 \ yF,.

4. Let F), be as described in case 15. Then there exists an element y, such that F, has 1
fixed point and 1 cycle of length q — 1 on every line o + yFq, where o € F 2 \ yFy.

For the permutations considered in the previous conjecture, it is easy to describe their
cycle structure on the line yIF,. We state this in the next proposition. Note that in cases 9, 14
and 15, y € I, and thus yF, =TF,.

Proposition 5 Let ord(x) be the multiplicative order of x in .

(@) In cases 1 and 3 the permutations have q fixed points on yFy, if q is even, and 1 fixed
point and (g — 1)/ ord(3) cycles of length ord(3) on y I, if q is odd.

(b) In cases 9 and 14 the permutation F, reduces to the identity mapping on y¥, and
consequently has q fixed points on yT,.

(c) In case 15 the permutation F, reduces to F(u) = (2y + 1)u on yF, and consequently
has one fixed point and (g — 1)/ ord(2y + 1) cycles of length ord(2y + 1) on yF,.
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Permutations on finite fields with invariant cycle structure on lines 1729

Table 1 Examples of cycle structure on lines for n = 2

Case q y Cycle struct. on any line [ || yIFq,l # yFy
1 289 11422810
1024 418252014020
2% 125 1321304
1103 131822822524
3 289 11422810
1024 418252014020
4 289 114112214228162280!
1024 4114018801
5 289 1981194521 148!
1024 141402240'500!
6 289 114541985
2197 1109932573 1560
7 1024 1 1411201920410
#1 143027028022601 400!
4096 1 82720120°14424400
#1 416121223022521360% 5614
3 2048 122011221441 665885110'1322 176! 19812421
8192 12778260391052565% 9116104141174 130% 143215602084260! 364!
9 1024 1 416017
a 216%621186°
a% 1694 %«
10 1024 1410220535%60° 400!
8192 212625223902 1014125741 3666!
11 2048 2122455213811 1652
16384 14283407422553% 1141445722
12* 2048 1082212762
32768 1109226130728
13 1024 2245302801320 540!
16384 2214256117014308! 34024
14 1024 1 4112520036960°1802
b 256%
15 243 c 112421 5%
4 112161132262 782

Here aisarootof x10+x0 + x5+ x3 +x2 4 x + 1in F1024, b is a root of x> +x%+1in F3, and ¢ is a root
of x5 — x + 1 in Fo43. *We determine the cycle structure for these cases completely in Theorems 7 and 10
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Table 2 Examples of cycle

structure on lines for n = 3 Case q A s
16 81 3lglo4123 )
112046114 3
1121315369152 6
12141101 11420! 12
1219111122!36! 12
113191271411 b
1'539110%35! 2
113151 141281301 o4
125 122132416212321" 42! 9
21111342441 9
217910'50! 9
2114°53! 9
516'18360! 9
14469! 9
324291183242 8
127°107202 27
122132416191125361 27
17 81 316194123 )
132366123 3
4291322 6
133141719122133! 12
133161712735! 12
21317110 14145! 12
2136'43! 1
18163! "
19162! 1
125 1122317191 131151 20!53! 9
11314171181391531 9
223181481 62! 9
125191461 63! 9
1211'16'30' 66! 9
6'8144167! 9
142251121291 711 9
251261741 9
8141'76! 9
223281261811 9
2251331831 9
112231428115186! 9
1I227]819|96] 9
128'115! 9

Here column A contains the cycle structure on lines / || yF,, I # yF, and
B the number of planes P > yIF, with such lines
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Remark 4 At present we have no explanation for the cycle structure of case 16. In [6] we
describe explicitly the cycle structure of the composition of this mapping with x¢ P+ ! that
is for x4° 91 4 Tr,3,,(x). The possible cycle lengths are only 1, the multiplicative order of

4 modulo p and twice the multiplicative order of 4 modulo p, where p is the characteristic
of IF,.
q

3 Determining the cycle structure of x + ¥ Trgz 4 (x2977).

Numerical results for case 2 of Theorem 4 show that the cycle structure of these permutations
onlines !/ || yFy, [ # y[F, is the same as the cycle structure of x3 on IF,. The next Theorem
by Ahmad describes the cycle structure of permutation polynomials x*. We denote by ord;, (k)
the order of k£ modulo #, i.e. the smallest positive integer m with k" = 1 (mod 7).

Theorem 5 ([1]) The polynomial x*, ged(k, g — 1) = 1, permuting I} has a cycle of length
t if and only if t = ord,, (k), where m | (¢ — 1). The number N; of t-cycles satisfies

t-Ny=ged(k' —=1,g—1)— > i-Nyand Ny =ged(k — 1,4 — 1).
il it
Remark5 On I, x¥ has the additional fixed point x = 0 and thus N; + 1 fixed points in
total.

Let Tr(x) = Trqz/q (x) = x + x7 be the trace map from IFq2 to IF,. We use this notation
for the remainder of the paper. In this section we determine the cycle structure of case
2 of Theorem 4, which is F(x) = x + y Tr(x24=1) on Iqu, where ¢ = —1 (mod 3) and
y3i=— % We do this by showing, that indeed the cycle structure of F(x) = x4y Tr(x2¢~1)
onlines ! || yF,, I # yF, is the same as the cycle structure of x3on F,.

By Proposition 4 for all admissible choices of y the cycle structure of F as well as its
cycle structure on the lines parallel to yIF; is the same. Hence we consider the case y = —%,
for which yF, = F, holds, because in this case y € [F,.

First we determine the cycle structure of F on [F,.

Lemma3 Let g = —1 (mod 3) and p be the characteristic of Fy. Then

(a) If q is even, the permutation F(x) = x — % Tr(x22~1Y reduces to F(x) = x on the line
F,. Consequently it has q fixed points on F.

(b) If q is odd, the permutation F(x) = x — % Tr(x24=1) reduces to F(x) = %x on the line
;. Consequently, it has one fixed point and Oquf(g) cycles of length ord,(3) on IF,.

Proof 1f g is even and x € IF,, then clearly F(x) = x. If otherwise ¢ is odd and x € I,
then
1

F(x) = 1T(Z’FI) 1T() :
= — — 1T = — — 1T = —_—— = —X.
X X 3 X X 3 X X 3x 3X

)m x. Therefore if x # 0itis contained

So x = 0is afixed point and the m-th iterate of F is (%
»(3) =ord,(3). O

in the cycle (x, %x, R (%)k_l x) where k = ord

To determine the cycle structure of F" on the other lines parallel to IF,, by Theorem 3, we
only need to pick one of them and find the cycle structure on it. The following claim will be
used for a suitable choice of this line.
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1732 D. Gerike, G. M. Kyureghyan

Claim1 If g =5 (mod 6), then —% is a non-square of [F.

Proof Let g = p® with p prime. Then p = 5 (mod 6) and s is odd. Hence —% is a non-

square of I, if and only if —% is a non-square in I ,. The rest follows from the observation
that —% is a non-square in a prime field I, with p =5 (mod 6). The latter follows directly
from the Quadratic Reciprocity Law. O

Now we are ready to determine the rest of the cycle structure of F.

Theorem6 Let g = —1 (mod 3) and a € Iqu \ Fy. Then the permutation F(x) = x —
% Tr(x22=Y) has the same cycle structure on o + I, as the permutation x3on F,.

Proof According to Theorem 3 the cycle structure of F on the line & +F, does not depend on
the choice of o € F2 \ IFy. As in the proof of Theorem 2 for any « and / € F; the following
holds: F(a +1) = a4+ Gy(l) and G4 (I) :==1+ y Tr((« + nx-1 permutes I, and has the
same cycle structure as F on a + ;. Next we show that for a particular choice of o, and thus

for any choice of & by Theorem 3, the permutation Gy, is a conjugate of m(x) = x> in Sp .
1

If ¢ is even, then y = —3=1¢€ Fr. Leta € Fy < IE‘qz, o ¢ Fr. Since g = 27, with s
odd, o ¢ [Fas. This « satisfies
=a+1, a®=1, Tr(@)=af +a=a’+a =1,
Tr(e?) = Tr(e + 1) = Tr(a) = 1, Tr(e®) = Tr(1) =0

and

(@+D =@+ D@+ =@+ D@+ 1+1)
—oltataltal +I+P=0P+1+1.

Using the above equations we get

Go()=1+Tr((@+ DY =1+Tr <W>
o+

:l+(aq+l)2 (oz+l)2: @+ 13+ (@+0D)?
o+ ol +1 (a+D(@?+1)
Tr((a+ D)%) - 213 + 312 Tr(a) + 31 Tr(e?) + Tr(a3)
(a +Datl 24141

. 1> +1 :l3+12+1+12+1: IE
P+i+1 P+i+1 P+i+1

1

Now we can show that G, = ¢~ om o, or equivalently ¢ o G, = m o ¢ for the permutation

1
N2 T L L#EO,
o) =117 {1, 1=0.
We have
(0o0Gy)O0)= f(0)=1=m(l) = (mop)(0).
If I # 0 then
P+l+1 11 1 1 3
(‘pOGQ)(Z):T"‘_l:ﬁ""ﬁ"'j"'l:<j+1> =(mo@)(l).
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This proves the theorem for even g.

If g is odd, then by Claim 1, —% is a non-square of IF, so there is a € qu \ F, with

a? = —%. This o satisfies (¢?)? = (¢?)? = o and thus

ol =—a, Tr(@)=Tr(—a)=0, Tr(@?) =2a> Tr@’) =a’Tr(a) =0.

Using these equations we obtain

_ _l 2g—1y _ _l 2(g+D ( ! )
Gal) =1 = Tr((@+ D" =1 = 2@ +D Tr @t1)]

! 21 !
=1 -3 [@ +D@+D] ((a+l)3+(aq+l)3>

(@ +03 + (@ 4+ 1)} _ 1 Tr(( +a)?)

1
— = (2 —a?)?
3( a’)

(12 — a2)3 - 3 ' TR g2
g 1 203 + 312 Tr(w) + 31 Tr(e?) + Tr(a?)
a 3 12 — a2
. 1 28 4 6la? 1 23 -2
T3 T T T3y
1212 =2) 1B +1)—1@2>=2) [(*+3)
I EN S T 3211 R
where * follows from o? = —%. Next we show that G4 = ¢~ ! o m o @, or equivalently

¢ o Gy = m o ¢ for the permutation

q-2 1= —
w(l)::(%ul) —1:{“” t# -1

2 —1, I=-1
We have
—1(1+3)
(poGu)(=1) =9 <37> =¢(-1) =-1=m(=1) = (mog)(—1).
+1
If I # —1 then
2
0 Gy el G NI VoY RS Y A o o2
o) = = = = (m o .
¢ ba W3 143 +32+8  \1+1 v
3241
Consequently F has the same cycle structure on & + I as x3 on Fy,. O

We summarize the results of this section by describing explicitly the cycle structure of F
in the general case.

Theorem7 Letq = —1 (mod 3), p be the characteristic of Fy andy € F 2 with y3 = —%.
Let N; be defined by the following recursion

Ny = ged(2,q — 1)
and
t-N,=ged3 —1,g—1)— Y i-N;.
ittt
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1. Let q be even. Then the permutation F(x) = x +y Tr(x24~1) of ¥ ;2 has q fixed points
on yFq. Further, on any affine line o + yFq, o € F2 \ yFy, the permutation F(x) has
N1+ 1 = 2 fixed points and N; cycles of length t for everyt > 1, such that t = ord,,(3)
for a divisor m of g — 1.

2. Let q be odd. Then the permutation F(x) = x + y Tr(x??~!) of F,2 has one fixed
point and orqdi;(lfﬁ) cycles of length ord, (3) on yF,. Further, on any affine line o + yFy,
o € Fo \ yFy, the permutation F(x) has N1 + 1 = 3 fixed points and N, cycles of
length t for every t > 1, such that t = ord,, (3) for a divisor m of g — 1.

Proof The theorem follows from Lemma 3 and Theorems 6 and 5. ]

Corollary 1 Let g = —1 (mod 3) and y € F 2 with Y3 = —%. Then the permutation
F(x) = x 4+ y Tr(x2~ 1Y has 3q — 2 fixed points on Fge.

Proof 1f q is even, there are ¢ fixed points on y[F, and 2 fixed points on any of the g — 1
affine lines o + yIFy, so in this case F has g + 2(¢ — 1) = 3g — 2 fixed points in total.

If g is odd, there is 1 fixed point on I, and there are 3 fixed points on any of the g — 1
affine lines o + yIF, so in this case F has 1 + 3(¢ — 1) = 3¢ — 2 fixed points in total.

4 Determining the cycle structure of x + Y Trg2 g | X 3 .

In this section we determine the cycle structure of case 12 of Theorem 4, which is F(x) =
25—1 351
x+yTr X ) on F,2, where ¢ = 27, 5 odd and y@+D/3 = 1, Recall, that by

Tr(x), we denote Try2 (x) = x4 + x. By Proposition 4 for all admissible choices of y the
cycle structure of F as well as its cycle structure on the lines parallel to yIF, is the same.
Hence it is enough to consider y = 1, for which yIF;, = IF; holds.

We first determine the number of fixed points of F on F 2.

Lemma4 Let g = 2° and s be odd. Then the permutation
221430571y
Fx)=x+Tr <x 3 )
2
of ¥ 2 has % + 1 fixed points.
. . . . 2251430514 .
Proof Note that x is a fixed point of F if and only if Tr ( x 3 = 0. Since

223—1 3. 25—1 1 1
=

3 5 and ged(2 M 1,22 — 1) =1,

2251430514 g+l :
Tr( x 3 has the same number of zeros as Tr (x 3 ) Clearly O is a zero of

g+l
3

Tr (x*) If x # 0, then
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if and only if

¢*-1

1+x3 =0.

¢*-1

. . . 2257143057141 g*—1
Since 1 +x 3 splits completely over IF 2, this shows that Tr | x 3 has *5— +1
2
zeros, and consequently F has ‘13—71 + 1 fixed points in Iqu. O
The next lemma describes the cycle structure of F on the line [F,.

Lemma5 Let g = 2° and s be odd. Then the permutation
25—1_ 3.95—1
F()c):x—l—Tr<x2 52 H)

reduces to the identity on the line F,. Consequently it has q fixed points on .

Proof Clearly F(x) = x forx € F,. O

Lemma6 Let g = 2° and s be odd. Let a € F,2 \ Fyq. Then the permutation F(x) =
2s—1,2.95—1 s

x+Tr (xz =2 +1> has %ﬁxedpoints on the line a + .

Proof By Lemma 4 F has ‘123—_1 + 1 fixed points and by Lemma 5 we have that g of them

are on the line ;. By Theorem 3, the permutation F has the same number of fixed points on
every line o + Iy, where o € F 2 \ Fy. So on any of those lines the number of fixed points

1S
22s_1+1 25 ) /(28 =22
3 T3

m}

To determine the cycle structure of F on the lines parallel but not equal to IF,, by Theorem 3
it suffices to pick one of them and find the cycle structure on it.

Theorem 8 Letq = 2% and s be odd. Let o € F 2 \Fy and B € (F4\F2) < (F 2 \Fy). Then
25s—1,2.95—1
the permutation F (x) = x+Tr (x e ) has the same cycle structure on o+ as the
s—1 .
s—1
permutation Gg(x) = x + Py @) +x+1)on Fy, where Py(x) = Tr (H(x2 + ﬂ)).

k=0
In particular G g(x) has 2‘%2 fixed points.

Proof By Theorem 3 the cycle structure of F* on the line « + I, does not depend on the
choice of o € F2 \ Fy. Here we choose o = f and as in Theorem 6 conclude, that the
considered cycle structure is the same as that of

P s |
Gg:Fy—Fy, Ggx)=x+Tr|{(x+p) 3 .
Since B € Fy4 \ 3, we have that

Br=B+1, B =1, B* =B, p1 = p*.
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Note that

223‘*1 +3 . 2“‘71 +1 _ 25_1 +4S—l _ 4-5‘717_1 = 23_1 +4S—1 _ si4k
3 . |

and therefore

2s71 4571
Gﬂ(x):x+Tr<(x+’3) (x + ) )

At )

Since for x € [,

s—1 L (s—1)/2 " s—1 "
[Je* +8) = H « 4+ [ o +8
k=0 k=0 k=(s—1)/2+1

(s—1)/2 (s—1)/2

H 2+ p) H g = H(x +8).

we get

s—2 2k
k [TiZo% +8)
[[e* +8) = 7;’ s

and

x2 + B2 ) - 52! +B N 52! + B2
M52 +8) [5G + 8D =@ +B)

s—1, ok
1_[]( 0(x2k +:3)+1_[k ()(x2k +,32) - TI'( =0 (X2 +,8))

Gg(x) =x+Tr<

262 + B £ ) Lo + 0% + 1)
Further, note that
§—2 25—]_1 2 2571 2371
5 ok 5 o (x4 x) +1 x +x+1
1 = J — =
g(()‘ +07 + 1) ,z:(:) = e oy
and hence
2
x“+x+1)Ps(x s—
Gpw) = x+ S EXEDBO o p e x ),
x +x+1
s—1 .
where Py(x) = Tr (H(x2 + ﬂ)>. 0
k=0

The following properties of Ps(x) will allow us to determine the cycle structure of Gg
explicitly. For s = 3™ - [, where 3 { [, we define v3(s) := m.

Lemma7 Let B € Fy \ F2, x € Fps and s be odd. Let t | s, u € Fy and Gg(x) =

s—1
x + Ps(x)(xzs_1 + x + 1), where Py(x) = Tr (l_[(xzk + ,3)). Then
k=0
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(2) Py(x) € Fy,
0, 3] (s/t)
b) P =

®) ) Pi(u), 31 (s/t)

(©) Gp(x) = x if and only if Py(x) =0,
() #{x e Fy | Py(x) =0} = 252,

(&) #lx € P | Py(x) = 1) = 2572,

0, v3(t) < v3(s),
# e s =1} = t
() #{u € Fy|Ps(u) = 1} {2+31+2 v3(t) = v3(s).

Proof The fact that

s—1 4 s—1 s—1 s—1
(H(xzk + ﬁ)) = []** + 8 =[] +B). shows that [[x> + B) € Fu.
k=0 k=0

k=0 k=0
Thus
s—1 . s—1 .
Py(x) = Ty s (]‘[(x2 + ﬁ)) = Tra)n (]‘[(x2 + ﬁ)) e s,
k=0 k=0
which is (a). Further note that u? + B # 0 and

s/t =0 (mod 3)

s—1 t—1 X4 1,
[Te® +p = (l_huzk + m) =@ +8), s/t=1 (mod3)
k=0 k=0 L B, s/t=2 (mod 3)

and, because 87 = ,82,

1—1 t—1
Trg2/q (I—[(uz" + ﬂ2)> = Trgzq (I—[(uzk + ﬂ)) = Py(w).
k=0 k=0

This shows (b). Since s is odd, x2 + x + 1 has no root in Fps, which implies (c). By
22

Theorem 8, the permutation Gg has == fixed points. With (c), we see that #{x € Fos |
Pi(x) =0} = 2~"sz’ which is (d). By (a), we know that P (x) € [y, so

25 _ 9 2&+1 2
#lx € By | Py(x) = 1) = 2 — #{x € Fys | Py(x) = 0} =2° — -2 *

3 3
This is (e). With (b) we obtain
o, 31 (s/0)
Flu eI =1 = [#{u € Fy|Pu) = 1}, 31 (s/1)
o 31 (s/1)
L2234 s/n)
Since 3 1 (s/t) if and only if v3(¢) = v3(s), () follows. O

Now we are ready to determine the cycle structure of Gg.
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s—1
Theorem 9 Let g = 2° with s odd and 8 € Fq \ Fy. Let Py(x) = Tr (n(xzk + /3)). Then

k=0
the permutation Gg(x) = x + Ps(x)(xzﬁ1 +x+ 1) of Fy has (13;2 fixed points and N,
cycles of length 2t for every t | s with v3(t) = v3(s). The numbers N; are positive and satisfy
2t+1 2 m
2N, = % — 3" 2dNgand 2-3"Nyn = 22 swhere m = v3(s).

d|t,d<t,
v3(d)=v3(s)

Proof By Lemma 7(c), x € [, is a fixed point of Gg if and only if P;(x) = 0 and then
Lemma 7(d) shows that Gg has 922 fixed points. Let G, = G o--- o G denote the n-th
3 BT ————

n

iterate of Gg.

Consider now an xq € I, that is not fixed by Gg, i.e. an xg € [F; with P(xg) # 0. Then
P;(xp) = 1 by Lemma 7(a). Consequently on the cycle containing x( the permutation Gg
reduces to

Gp) =x+x> +x+1=x""+1
and thus has its inverse given by
Gyl =x"+1.
As aresult an even number of iterations of Glgl yields
G (0 =22,
while an odd number of iterations gives

Gz =2 41

. . 2t+1 .
Since s is odd, x2 + x + 1 has no roots in I, so

2241

xo#xg  +1=G5""(x). andthus GF T (x0) # xo.

Hence the cycle length is even, say 2¢. Since ¢ is minimal with xg = G,;z’ (xp) = (xgt)zt, it
must hold that xg € Fy. This forces 7 | s.
Suppose now ¢ | s and Gg has N, cycles of length 2¢. Then it must hold that

2tNy = #{u € Fy | Pg(u) = 1 and u is not in a subfield of [y}

Ps(u) =1and u is not}

= #{u € Fy | Py(u) = 1) —Z#{u € F20 | 4 subfield of Fo

djt
d<t

Combining this with Lemma 7(f), we get

0, v3 (1) < v3(s)
2uN; = {2522 S 24N, vs() = vs(s).
d
i

Note that 2d Ny = 0if d | s with v3(d) < v3(s). Finally observe that for any ¢ | s with
v3(t) = v3(s), the number N, is positive. Indeed, by Lemma 7 (e) there are proper elements
u of Fy: with Ps(u) = 1. These numbers satisfy then
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2 42
2tN, = — - Z 2dN,.
d|t,d<t,
v3(d)=v3(s)

. . 3M 4]
For t = 3™ with m = v3(s), the sum is empty and thus 2 - 3" N3m = M% ]

We summarize the results of this section by describing explicitly the cycle structure of F
in the general case.

Theorem 10 Let ¢ = 2° and s be odd. Let y € F2 with y@tD/3 = 1 Fort | s, with
v3(t) = v3(s), let N; be defined by the following recursion

N 23’"+1 + B
3m = 2 ) 3’n+] N fOrm = VS(S)
and
201 42
AN = = = > 2dNy.

dir,d<t,
v3(d)=v3(s)

. P S |
Then the permutation F(x) = x + y Tr | x 3 of F2 has

1. q fixed points on yIF, and
2. %ﬁxedpoints and Ny cycles of length 2t on every affine line a+yFg witha € F2\yF,,
where t is an arbitrary divisor of s satisfying v3(t) = v3(s).

Proof Part 1 follows from Lemma 5 and part 2 follows from Theorems 8 and 9. O
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