Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/60687
Title: Classification of triples of lattice polytopes with a given mixed volume
Author(s): Averkov, Gennadiy
Borger, Christopher
Soprunov, Ivan
Issue Date: 2021
Type: Article
Language: English
URN: urn:nbn:de:gbv:ma9:1-1981185920-626381
Subjects: Bernstein–Khovanskii–Kouchnirenko theorem
Classification
Lattice polytope
Mixed volume
Newton polytope
Sparse polynomial systems
Abstract: We present an algorithm for the classification of triples of lattice polytopes with a given mixed volume m in dimension 3. It is known that the classification can be reduced to the enumeration of so-called irreducible triples, the number of which is finite for fixed m. Following this algorithm, we enumerate all irreducible triples of normalized mixed volume up to 4 that are inclusion-maximal. This produces a classification of generic trivariate sparse polynomial systems with up to 4 solutions in the complex torus, up to monomial changes of variables. By a recent result of Esterov, this leads to a description of all generic trivariate sparse polynomial systems that are solvable by radicals.
URI: https://opendata.uni-halle.de//handle/1981185920/62638
http://dx.doi.org/10.25673/60687
Open Access: Open access publication
License: (CC BY 4.0) Creative Commons Attribution 4.0(CC BY 4.0) Creative Commons Attribution 4.0
Sponsor/Funder: Projekt DEAL 2020
Journal Title: Discrete & computational geometry
Publisher: Springer
Publisher Place: New York, NY
Volume: 66
Original Publication: 10.1007/s00454-020-00246-4
Page Start: 165
Page End: 202
Appears in Collections:Fakultät für Mathematik (OA)

Files in This Item:
File Description SizeFormat 
Averkov et al._Classification_2021.pdfZweitveröffentlichung692.16 kBAdobe PDFThumbnail
View/Open