Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/60687
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAverkov, Gennadiy-
dc.contributor.authorBorger, Christopher-
dc.contributor.authorSoprunov, Ivan-
dc.date.accessioned2022-01-27T13:19:42Z-
dc.date.available2022-01-27T13:19:42Z-
dc.date.issued2021-
dc.date.submitted2021-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/62638-
dc.identifier.urihttp://dx.doi.org/10.25673/60687-
dc.description.abstractWe present an algorithm for the classification of triples of lattice polytopes with a given mixed volume m in dimension 3. It is known that the classification can be reduced to the enumeration of so-called irreducible triples, the number of which is finite for fixed m. Following this algorithm, we enumerate all irreducible triples of normalized mixed volume up to 4 that are inclusion-maximal. This produces a classification of generic trivariate sparse polynomial systems with up to 4 solutions in the complex torus, up to monomial changes of variables. By a recent result of Esterov, this leads to a description of all generic trivariate sparse polynomial systems that are solvable by radicals.eng
dc.description.sponsorshipProjekt DEAL 2020-
dc.language.isoeng-
dc.relation.ispartofhttp://link.springer.com/journal/454-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectBernstein–Khovanskii–Kouchnirenko theoremeng
dc.subjectClassificationeng
dc.subjectLattice polytopeeng
dc.subjectMixed volumeeng
dc.subjectNewton polytopeeng
dc.subjectSparse polynomial systemseng
dc.subject.ddc510.72-
dc.titleClassification of triples of lattice polytopes with a given mixed volumeeng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-626381-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleDiscrete & computational geometry-
local.bibliographicCitation.volume66-
local.bibliographicCitation.pagestart165-
local.bibliographicCitation.pageend202-
local.bibliographicCitation.publishernameSpringer-
local.bibliographicCitation.publisherplaceNew York, NY-
local.bibliographicCitation.doi10.1007/s00454-020-00246-4-
local.openaccesstrue-
dc.identifier.ppn1787331377-
local.bibliographicCitation.year2021-
cbs.sru.importDate2022-01-27T13:13:59Z-
local.bibliographicCitationEnthalten in Discrete & computational geometry - New York, NY : Springer, 1986-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Mathematik (OA)

Files in This Item:
File Description SizeFormat 
Averkov et al._Classification_2021.pdfZweitveröffentlichung692.16 kBAdobe PDFThumbnail
View/Open