Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/42547
Title: Operational complexity and right linear grammars
Author(s): Dassow, Jürgen
Issue Date: 2021
Type: Article
Language: English
URN: urn:nbn:de:gbv:ma9:1-1981185920-445019
Subjects: Complexity of languages
Linear grammars
Abstract: For a regular language L, let Var(L) be the minimal number of nonterminals necessary to generate L by right linear grammars. Moreover, for natural numbers k1,k2,…,kn and an n-ary regularity preserving operation f, let gVarf(k1,k2,…,kn) be the set of all numbers k such that there are regular languages L1,L2,…,Ln such that Var(Li)=ki for 1≤i≤n and Var(f(L1,L2,…,Ln))=k. We completely determine the sets gVarf for the operations reversal, Kleene-closures + and ∗, and union; and we give partial results for product and intersection.
URI: https://opendata.uni-halle.de//handle/1981185920/44501
http://dx.doi.org/10.25673/42547
Open Access: Open access publication
License: (CC BY 4.0) Creative Commons Attribution 4.0(CC BY 4.0) Creative Commons Attribution 4.0
Sponsor/Funder: Projekt DEAL 2020
Journal Title: Acta informatica
Publisher: Springer
Publisher Place: Berlin
Volume: 58
Issue: 2021
Original Publication: 10.1007/s00236-020-00386-3
Page Start: 281
Page End: 299
Appears in Collections:Fakultät für Informatik (OA)

Files in This Item:
File Description SizeFormat 
Dassow_Juergen_Operational_2021.pdfZweitveröffentlichung295.54 kBAdobe PDFThumbnail
View/Open