Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/42547
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDassow, Jürgen-
dc.date.accessioned2021-12-15T09:27:15Z-
dc.date.available2021-12-15T09:27:15Z-
dc.date.issued2021-
dc.date.submitted2021-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/44501-
dc.identifier.urihttp://dx.doi.org/10.25673/42547-
dc.description.abstractFor a regular language L, let Var(L) be the minimal number of nonterminals necessary to generate L by right linear grammars. Moreover, for natural numbers k1,k2,…,kn and an n-ary regularity preserving operation f, let gVarf(k1,k2,…,kn) be the set of all numbers k such that there are regular languages L1,L2,…,Ln such that Var(Li)=ki for 1≤i≤n and Var(f(L1,L2,…,Ln))=k. We completely determine the sets gVarf for the operations reversal, Kleene-closures + and ∗, and union; and we give partial results for product and intersection.eng
dc.description.sponsorshipProjekt DEAL 2020-
dc.language.isoeng-
dc.relation.ispartofhttp://link.springer.com/journal/236-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectComplexity of languageseng
dc.subjectLinear grammarseng
dc.subject.ddc000-
dc.titleOperational complexity and right linear grammarseng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-445019-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleActa informatica-
local.bibliographicCitation.volume58-
local.bibliographicCitation.issue2021-
local.bibliographicCitation.pagestart281-
local.bibliographicCitation.pageend299-
local.bibliographicCitation.publishernameSpringer-
local.bibliographicCitation.publisherplaceBerlin-
local.bibliographicCitation.doi10.1007/s00236-020-00386-3-
local.openaccesstrue-
dc.identifier.ppn1782087230-
local.bibliographicCitation.year2021-
cbs.sru.importDate2021-12-15T09:21:37Z-
local.bibliographicCitationEnthalten in Acta informatica - Berlin : Springer, 1971-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Informatik (OA)

Files in This Item:
File Description SizeFormat 
Dassow_Juergen_Operational_2021.pdfZweitveröffentlichung295.54 kBAdobe PDFThumbnail
View/Open