Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/37927
Title: | Chebyshev-Edgeworth-type Approximations for statistics based on samples with random sizes |
Author(s): | Christoph, Gerd Ulyanov, Vladimir V. |
Issue Date: | 2021 |
Type: | Article |
Language: | English |
URN: | urn:nbn:de:gbv:ma9:1-1981185920-381702 |
Subjects: | Second-order expansions Random sample size Asymptotically normal statistics Laplace and generalized Laplace distribution Weighted sums of generalized gamma distributions |
Abstract: | Second-order Chebyshev–Edgeworth expansions are derived for various statistics from samples with random sample sizes, where the asymptotic laws are scale mixtures of the standard normal or chi-square distributions with scale mixing gamma or inverse exponential distributions. A formal construction of asymptotic expansions is developed. Therefore, the results can be applied to a whole family of asymptotically normal or chi-square statistics. The random mean, the normalized Student t-distribution and the Student t-statistic under non-normality with the normal limit law are considered. With the chi-square limit distribution, Hotelling’s generalized T2 0 statistics and scale mixture of chi-square distributions are used. We present the first Chebyshev–Edgeworth expansions for asymptotically chi-square statistics based on samples with random sample sizes. The statistics allow non-random, random, and mixed normalization factors. Depending on the type of normalization, we can find three different limit distributions for each of the statistics considered. Limit laws are Student t-, standard normal, inverse Pareto, generalized gamma, Laplace and generalized Laplace as well as weighted sums of generalized gamma distributions. The paper continues the authors’ studies on the approximation of statistics for randomly sized samples. |
URI: | https://opendata.uni-halle.de//handle/1981185920/38170 http://dx.doi.org/10.25673/37927 |
Open Access: | Open access publication |
License: | (CC BY 4.0) Creative Commons Attribution 4.0 |
Sponsor/Funder: | OVGU-Publikationsfonds 2021 |
Journal Title: | Mathematics |
Publisher: | MDPI |
Publisher Place: | Basel |
Volume: | 9 |
Issue: | 7 |
Original Publication: | 10.3390/math9070775 |
Page Start: | 1 |
Page End: | 28 |
Appears in Collections: | Fakultät für Mathematik (OA) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Christoph et al._Chebyshev-Edgeworth-type_2021.pdf | Zweitveröffentlichung | 400.85 kB | Adobe PDF | View/Open |