Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/36127
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBorger, Christopher-
dc.contributor.authorNill, Benjamin-
dc.date.accessioned2021-03-24T07:02:23Z-
dc.date.available2021-03-24T07:02:23Z-
dc.date.issued2020-
dc.date.submitted2020-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/36360-
dc.identifier.urihttp://dx.doi.org/10.25673/36127-
dc.description.abstractThe mixed discriminant of a family of point configurations can be considered as a generalization of the A-discriminant of one Laurent polynomial to a family of Laurent polynomials. Generalizing the concept of defectivity, a family of point configurations is called defective if the mixed discriminant is trivial. Using a recent criterion by Furukawa and Ito we give a necessary condition for defectivity of a family in the case that all point configurations are full-dimensional. This implies the conjecture by Cattani, Cueto, Dickenstein, Di Rocco, and Sturmfels that a family of n full-dimensional configurations in Zn is defective if and only if the mixed volume of the convex hulls of its elements is 1.eng
dc.description.sponsorshipDFG-Publikationsfonds 2020-
dc.language.isoeng-
dc.relation.ispartofhttps://www.ams.org/publications/journals/journalsframework/bproc-
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/-
dc.subjectPoint configurationseng
dc.subjectFamilieseng
dc.subject.ddc510-
dc.titleOn defectivity of families of full-dimensional point configurationseng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-363605-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleProceedings of the American Mathematical Society / B-
local.bibliographicCitation.volume7-
local.bibliographicCitation.issue2020-
local.bibliographicCitation.pagestart43-
local.bibliographicCitation.pageend51-
local.bibliographicCitation.publishernameAmerican Mathematical Society-
local.bibliographicCitation.publisherplaceProvidence, RI-
local.bibliographicCitation.doi10.1090/bproc/46-
local.openaccesstrue-
dc.identifier.ppn1741587239-
local.bibliographicCitation.year2020-
cbs.sru.importDate2021-03-24T06:52:30Z-
local.bibliographicCitationEnthalten in Proceedings of the American Mathematical Society / B - Providence, RI : Soc., 2014-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Mathematik (OA)

Files in This Item:
File Description SizeFormat 
Borger et al._on defectivity_2020.pdfZweitveröffentlichung176.36 kBAdobe PDFThumbnail
View/Open