Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/35095
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRobuschi, Nicolò-
dc.contributor.authorZeile, Clemens-
dc.contributor.authorSager, Sebastian-
dc.contributor.authorBraghin, Francesco-
dc.date.accessioned2020-11-20T09:52:07Z-
dc.date.available2020-11-20T09:52:07Z-
dc.date.issued2020-
dc.date.submitted2021-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/35298-
dc.identifier.urihttp://dx.doi.org/10.25673/35095-
dc.description.abstractThis study considers the problem of computing a non-causal minimum-fuel energy management strategy for a hybrid electric vehicle on a given driving cycle. Specifically, we address the multiphase mixed-integer nonlinear optimal control problem that arises when the optimal gear choice, torque split and engine on/off controls are sought in off-line evaluations. We propose an efficient model by introducing vanishing constraints and a phase specific right-hand side function that accounts for the different powertrain operating modes. The gearbox and driveability requirements translate into combinatorial constraints. These constraints have not been included in previous research; however, they are part of the algorithmic framework for this investigation. We devise a tailored algorithm to solve this problem by extending the combinatorial integral approximation (CIA) technique that breaks down the original mixed-integer nonlinear program into a sequence of nonlinear programs and mixed-integer linear programs, followed by a discussion of its approximation error. Finally, numerical results illustrate the proposed algorithm in terms of solution quality and run time.eng
dc.format.extent1 Online-Ressource (10 Seiten)-
dc.language.isoeng-
dc.publisherElsevier, Amsterdam-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectHybrid electric vehicleseng
dc.subjectHybrid powertrainseng
dc.subjectEnergy managementeng
dc.subjectNonlinear programmingeng
dc.subjectMixed-integer nonlinear optimal controleng
dc.subject.ddc519.6-
dc.titleMultiphase mixed-integer nonlinear optimal control of hybrid electric vehicleseng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-352983-
dc.relation.referenceshttps://www.journals.elsevier.com/automatica-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleAutomatica-
local.bibliographicCitation.volume123-
local.bibliographicCitation.issue2021-
local.bibliographicCitation.pagestart1-
local.bibliographicCitation.pageend10-
local.bibliographicCitation.publishernameElsevier-
local.bibliographicCitation.publisherplaceAmsterdam-
local.bibliographicCitation.doi10.1016/j.automatica.2020.109325-
local.openaccesstrue-
dc.identifier.ppn1740222075-
local.publication.countryXA-NL-
cbs.sru.importDate2020-11-20T09:46:46Z-
local.bibliographicCitationSonderdruck aus Automatica-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Mathematik (OA)

Files in This Item:
File Description SizeFormat 
Sager_et al._Automatica_2020.pdfZweitveröffentlichung1.5 MBAdobe PDFThumbnail
View/Open