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a b s t r a c t

This study considers the problem of computing a non-causal minimum-fuel energy management
strategy for a hybrid electric vehicle on a given driving cycle. Specifically, we address the multiphase
mixed-integer nonlinear optimal control problem that arises when the optimal gear choice, torque
split and engine on/off controls are sought in off-line evaluations. We propose an efficient model
by introducing vanishing constraints and a phase specific right-hand side function that accounts for
the different powertrain operating modes. The gearbox and driveability requirements translate into
combinatorial constraints. These constraints have not been included in previous research; however,
they are part of the algorithmic framework for this investigation. We devise a tailored algorithm to
solve this problem by extending the combinatorial integral approximation (CIA) technique that breaks
down the original mixed-integer nonlinear program into a sequence of nonlinear programs and mixed-
integer linear programs, followed by a discussion of its approximation error. Finally, numerical results
illustrate the proposed algorithm in terms of solution quality and run time.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
B

w
s
d
f
m

1. Introduction

Automotive manufacturers and research centers have been
ignificantly investing resources and efforts into the development
f alternative powertrain technologies to lower fuel consumption
nd pollutant emissions in passenger and commercial vehicles.
ybrid electric vehicles (HEVs) represent a concrete answer to
ddress these problems, since they can reduce greenhouse gas
missions and fuel consumption while providing a high-quality
ide. Notwithstanding this, the growing complexity and degrees
f freedom of current hybrid powertrain architectures impose
tailored supervisory energy management strategy (EMS) to

nleash the full potential of the HEV in terms of the fuel economy
nd driveability. Therefore, to gain insight on how to implement
he control strategy in on-line applications, or to compare dif-
erent powertrain architectures in a fair and unbiased way, the
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off-line EMS based on the solution of an optimal control problem
(OCP) over a predefined time horizon is an essential and powerful
tool. Especially when different gear choices and engine on/off
modes give rise to a problem with discrete variables. Hence, this
study addresses the problem of finding the off-line EMS for the
following mixed-integer optimal control problem (MIOCP):

Problem 1. Find the continuous torque split control factor u
over a compact set and the integer mode choice control γ that
minimizes the fuel consumption ṁf

J :=

∫ T

0
ṁf(t) dt,

over the given time horizon t ∈ [0, T ] ⊂ R and subject to:

Multiphase ODE: ẋ(t) = f(p(t), x(t), u(t), γ (t)),
oundary Conditions: x(0) = x0, x(tf ) = xf,

Constraints: 0 ≥ g(p(t), x(t), u(t), γ (t)),

here the differential states x include besides ṁf the battery
tate-of-charge and the engine cooling water temperature. x0, xf
enote the initial and final state conditions. We use the smooth
unction f to describe the right-hand side (RHS) of the powertrain
odel’s ordinary differential equation (ODE). The system dynam-

cs change according to the given phases p(t) ⊂ [0, T ]; thus,
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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e write multiphase. The function g collects path constraints,
o-called vanishing constraints and combinatorial constraints for
nteger controls.

The above problem will be specified with all of its variables
nd constraints in more detail in Sections 2 and 3 .

elated work. Similar problems to Problem 1 were investigated
with a fixed time horizon and an on-line EMS setting based on
past research (Guzzella & Sciarretta, 2013; Rizzoni & Onori, 2015)
that serves as a comprehensive overview.

This paper focuses on off-line applications. In this context,
esearchers have successfully solved nonlinear OCPs applied to
he EMS of HEVs through optimization techniques ranging from
ynamic programming to direct and indirect methods. Discrete
ynamic programming has been extensively used for solving the
onlinear EMS problem due to its straightforward implementa-
ion and global optimality guarantees, with prominent examples
n Elbert et al. (2015) and Wang et al. (2015). However, the
urse of dimensionality prevents solving problems with a number
f states that are generally greater than one or two. Indirect
ethods stem from the application of Pontryagin’s maximum
rinciple, which provides the necessary conditions for optimality.
he solution of the OCP is down to the solution of a two-point
oundary value problem or a multi-point boundary value prob-
em in the case of active path constraints; however, this requires a
riori knowledge of the constrained arcs. As a result, this restricts
ndirect methods to problems that are generally not influenced
y the active path constraints. Examples can be found in Kim
t al. (2011), Salazar et al. (2017) and Sciarretta et al. (2015).
ecent advancements in the field of direct methods led to a
idespread use of these techniques to solve OCPs. This is due
o the possibility to treat a general problem class that is char-
cterized by hundreds of differential and algebraic states. Convex
ptimization methods have been proven to be beneficial to solve
he off-line EMS problem (Murgovski et al., 2012; Robuschi et al.,
019). However, their main drawback is the simplification of
onlinearities when it is applied as a linear or quadratic model. To
ope with the nonlinear effects, in Limebeer et al. (2014) and Wei
t al. (2017) the authors propose the direct transcription of the
CP into a nonlinear program (NLP) that can be solved by using
tandard NLP solvers. Both approaches deal with mixed-integer
roblems, which arise when both continuous and discrete vari-
bles are embedded into the OCP. This leads to NP-hard problems
hat are computationally intractable for standard solvers when
onsidering long time horizons.
Bengea and DeCarlo (2005) and Sager (2006, 2009) have in-

ependently developed the embedding transformation technique
that is also called CIA decomposition for solving MIOCPs. It consists
of solving the NLP with a dropped integrality constraint before
approximating the relaxed controls in the CIA problem, which is
a mixed-integer linear program (MILP). Combinatorial constraints
such as the maximum switching number conditions (Sager et al.,
2011) and the dwell time constraints (Ali & Egerstedt, 2018;
Zeile et al., 2020) have been discussed in various settings and
they can be applied in the CIA context as additional constraints.
There are several studies about control theory in the automotive
field that builds upon the CIA decomposition (Böhme & Frank,
2017; Kirches et al., 2013; Meyer et al., 2016); however, most
neglect the combinatorial constraints by using rounding schemes
such as Sum-Up-Rounding (SUR). A rare example application of
multiphase MIOCP can be found in Bonami et al. (2013).

Contributions. This study investigates Problem 1 under real-
world requirements, specifically:

• The powertrain operates in different modes depending on a
given speed profile, which imposes the multiphase setting
of the ODE.
2

Fig. 1. Schematic representation of the HEV with EMS; explanation of the
abbreviations in the text.

• The dual clutch gearbox allows only a specific switching
structure that this study proposes for mode transition con-
straints.

• Switching between the electric and hybrid driving mode
during arbitrarily short periods of time is impossible, which
translates into minimum dwell time constraints.

e design a novel generalized CIA decomposition algorithm that
ses several NLP and MILP steps with the idea to construct a feasi-
le solution with a promising objective value for complex MIOCPs
hat entail multiphase, vanishing, state, and combinatorial con-
traints. To achieve this, the algorithm inherits the property of a
anishing optimality gap with a vanishing grid length from the
riginal CIA technique.

aper structure. Section 2 describes the powertrain model with
ts variables and constraints. Section 3 introduces the combina-
orial constraints. An algorithmic framework to solve multiphase
IOCPs is presented in Section 4. Finally, the numerical case
tudies are discussed followed by the conclusions in Sections 5
nd 6 , respectively.

otation. Let [n] := {1, . . . , n}, [n]0 := {0} ∪ [n], where n ∈ N.

. Model description

This section presents the powertrain shown in Fig. 1. It con-
ists of an internal combustion engine (ICE), an electric motor
EM) that provides boosting and regenerative braking, and a
econd electric motor (EM2) connected to the ICE through a belt.
his can be used to recharge the battery when the vehicle stands
till. The engine is connected to a 7-speed dual clutch gearbox,
hile the EM is coupled to the output shaft of the gearbox with
n additional gear set. The final drive (FD) and the differential
ransmit the propulsive power to the wheels. The fuel tank and
he battery are used for on-board energy storage.

In order to correctly evaluate the fuel consumption and the
attery’s state-of-charge while retaining a simple and fast esti-
ation, we use a backward quasi-static modeling approach (Gao
t al., 2007; Guzzella & Sciarretta, 2013) to describe the non-
ausal relationships between the powertrain subsystems. By mak-
ng this choice, the number of states needed to describe the
owertrain were reduced. We consider the speed profile v(t) of a

given driving cycle as an exogenous variable and drop the driver
model that would have otherwise been necessary to follow a
reference speed profile; thus, reducing the complexity of the HEV
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Fig. 2. Velocity profile and phases in a driving cycle.

odel. The efficiencies and parameters of the main subsystems
ere introduced by means of look-up tables; hence, making it
ossible to implement a model with nonlinear data. Furthermore,
e cast the model into a multiphase problem, in which a different
et of RHS functions applies for each phase.

.1. Dividing the time horizon into phases

Given a speed profile v(t) ∈ R≥0 for t ∈ [0, T ], we assume a
sampling time of one second and discretize the driving cycle ac-
cordingly with N intervals and the grid set GN = {0 = t0 < t1 . . .
< tN = T }, where the generic time interval is ∆tj = tj − tj−1,
∈ [N]. In each period ∆tj, we consider the first-order differential

equation describing the vehicle’s longitudinal dynamics (Guzzella
& Sciarretta, 2013):

meq ·
dv
dt

(t) = Ft(v(t)) − Fa(v(t)) − Fr(v(t)), (1)

where meq is the equivalent mass of the vehicle, Ft(t) is the
traction force, Fa(t) is the aerodynamic drag force, and Fr(t) is
the rolling resistance force. We discretize Eq. (1) and approximate
dv
dt (t) with the explicit Euler scheme that is applied for v(t). We
note that this integration scheme is a simple approximation;
however, it appears to be appropriate when the grid length is
small. By rearranging (1) in terms of Ft(t), we identify three
ossible operating modes for each interval ∆tj:

(1) Ft > 0, traction;
(2) Ft < 0, braking;
(3) Ft = 0, stand-still.

Thereafter, we collect all of the intervals that were subject
o the same operating mode in the np = 3 model phases (see
ig. 2), assuming disjoint subintervals [tj−1, tj), j ∈ [N], of the time

horizon. Let the function

p : [0, T ] → [np], p(t) = k ∈ [np], (2)

map each time point t to its associated phase.

2.2. Control variables

We introduce the integer control variable γ (t) ∈ [nb]0 with
nb = 7 and the continuous control variable u(t) ∈ [umin, 1], where
min < 0, models the powertrain’s mixed-integer nature. The
ariable γ (t) can help determine whether to operate the HEV in
he electric mode (EM is the only power source, the ICE is turned
ff, and the clutch is disengaged) or in hybrid mode (EM and ICE
re simultaneously used to power the vehicle). γ (t) receives a

value of 0 whenever the vehicle is required to operate in the
electric mode. It can also take on values in the set [nb] when it
operates in the hybrid mode with selected gears Γ ranging from
the 1st to the 7th, respectively. The control variable u(t) allows
to regulate the torque split between the ICE and the EM in each
hybrid operating mode. Specifically, by varying the control u, we
identify three different hybrid configurations:

(1) if u(t) ∈ [umin, 0): load point shift (LPS). The operating point
of the ICE is shifted toward higher loads and the exceeding
power recharges the battery;
 f

3

Fig. 3. Mixed-integer control choices during traction/braking. During stand-still,
u is dropped.

(2) if u(t) = 0: ICE mode. ICE is the only power source and it
propels the vehicle;

(3) if u(t) ∈ (0, 1]: boost. ICE and EM can cooperate to fulfill
the power requirements at the wheels.

Fig. 3 illustrates these scenarios during the traction/braking
phase. The control u is dropped in the stand-still phase since only
two different scenarios are applicable: either the ICE is turned off
(γ (t) = 0), or the ICE is turned on (γ (t) ∈ [nb]) so that the battery
can be recharged by means of EM2 that is operated with a fixed
value for the speed and torque provided by the ICE.

2.3. Differential states

We model the powertrain’s dynamics with the fuel mass flow
rate ṁf(t), the battery state-of-charge ξ (t), and the ICE cool-
ing water temperature θ (t) as differential states. The latter is
needed to account for the higher fuel consumption during the ICE
heating-up transient (van Berkel et al., 2014; Lescot et al., 2010).
We express the dependencies of the ODE for t ∈ [0, T ] as:

ṁf(t) = fmf (p(t),mf(t), θ (t), u(t), γ (t)),
θ̇ (t) = fθ (p(t), θ (t),mf(t)),
ξ̇ (t) = fξ (p(t), ξ (t), u(t), γ (t)).

or a detailed description of the smooth functions f(·) we refer
o Robuschi (2019). We group the differential states into vectors
(·) and their RHS functions into f(·) as proposed in Problem 1.

˙(t) = f(p(t), x(t), u(t), γ (t)). (3)

.4. Outer convexification

The idea of outer convexification applied to MIOCPs (Sager,
009) is to reformulate the ODE with affine entering binary
ontrols b(t) ∈ {0, 1}nb+1 in order to get rid of the integer control
(t). This reformulation opens the door for a canonical relaxation
(t) ∈ [0, 1]nb+1 that leads to an NLP after discretization. The
olution of the latter can be used as part of a rounding problem

or constructing a solution to the MIOCP. Therefore, we introduce
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inary controls bi(t) ∈ {0, 1}, for i ∈ [nb]0, t ∈ [0, T ] that indicate
he integer realization of γ (t):

i(t) = 1, ⇔ γ (t) = i.

et fi denote the RHS function where γ (t) = i, for i ∈ [nb]0,
olds. In this way, we reformulate Eq. (3) and obtain the outer
onvexified dynamics for t ∈ [0, T ]:

˙(t) =

nb∑
i=0

bi(t) · fi(p(t), x(t), u(t)), (4a)

1 =

nb∑
i=0

bi(t), (4b)

here (4b) is needed because the definition of the integer con-
rols γ implies mutually exclusive operation modes.

.5. Path and vanishing constraints

The state-of-charge has to fulfill path constraints in order to
reserve durability and reliability of the electric buffer. The choice
f these limits ξmin, ξmax ∈ [0, 1] is arbitrary and is generally
xpressed as:

min ≤ ξ (t) ≤ ξmax.

The operating points for the ICE and EM torque and the in-
ernal current for the battery have to be within a realistic range.
his restricts the choices of the continuous and binary controls.
e model these restrictions by mode specific lower and upper
ounds ulb,i, uub,i ∈ [umin, 1], i ∈ [nb]0, for u(·) and obtain
o-called vanishing constraints:

≤ bi(t) · (u(t) − ulb,i), (5a)

≤ bi(t) · (uub,i − u(t)). (5b)

o avoid numerical issues, we relax (5) by replacing zero with the
arameter ε = −1e−4. We chose the above indicator formulation
ue to its tight relaxation compared with other formulations
uch as the Big M method, please see Jung et al. (2018) for
urther details. The next section summarizes the above path and
anishing constraints together with combinatorial constraints in
he constraint function g from Problem 1.

. Combinatorial constraints

Technical requirements in realistic scenarios imply combi-
atorial constraints. We already introduced the combinatorial
onstraint Eq. (4b), which ensures that exactly one mode is active
or all time points. This section discusses the further restrictions
hat includes prefixing, the dwelling time, and mode transition
onstraints. Before we define these conditions, let us consider the
etails for the problem discretization because the combinatorial
onstraints appear more intuitive for the discrete setting.

.1. Problem discretization

We follow a first-discretize-then-optimize approach in the
ense that we discretize the ODE with the direct collocation
ethod and Lagrange interpolation polynomials; see Betts (2010)
nd Biegler (2010) for more details. For the control discretization,
e assume piecewise constant controls on the time grid GN .
ence, we introduce the discrete control variables u ∈ [umin, 1]N ,
∈ {0, 1}(nb+1)×N×np , where b incorporates variables for the

hases and the intervals because of our algorithmic idea; see
ection 4. Discretized controls can change values only on the grid
oints tj, j ∈ [N]:

(t)
⏐⏐ := b , u(t)

⏐⏐ := u .
i t∈[tj−1,tj) i,j,p(tj−1) t∈[tj−1,tj) j

4

Fig. 4. Illustration of the min-up time and mode transition constraints. If
activated, the hybrid, respectively electric, mode has to stay active for a duration
L greater or equal to UShc

, respectively USec even though there is no min-up time
for activating the individual gears. The mode transition constraint ensures that
the driver can switch at most one gear up or down per second. The time during
the electric phase can be used to change gears; thus, increasing the range of
the allowed gears when continuing in hybrid mode (represented with the dotted
lines). Both constraint classes have to be satisfied independently of the phases,
which are depicted in the background.

We apply an equidistant grid GN with a grid length ∆tj =

1s so that we neglect ∆tj in the formulation of combinatorial
constraints.

3.2. Prefixing constraints

We restrict the set of feasible gear choices to satisfy the
minimum and maximum ICE speed. Since the velocity profile is
known a priori, it is possible to pre-calculate the allowed gears
for each interval j ∈ [N]. Therefore, we exclude some options for
all p ∈ [np]:

i,j,p = 0, if gear i is invalid at interval j. (6)

3.3. Minimum dwell time constraints

Minimum dwell or min-up time constraints describe the re-
quirement to stay in a certain mode for a chosen time du-
ration after activation. Problem 1 requires min-up times for
the electric and hybrid mode that can overlap different phases.
Therefore, we introduce sets of the dwell time coupled controls
Sec = {(0, p) | p ∈ [np]} and Shc = {(i, p) | i ∈ [nb], p ∈ [np]} and
the electric and hybrid specific min-up times USec ,UShc

∈ N. The
constraints are defined for Sc ∈ {Sec , S

h
c }, j = 2, . . . ,N − 1, l =

j + 1, . . . ,min{N, j + USc } as:∑
(i,p)∈Sc

bi,l,p ≥

∑
(i,p)∈Sc

(bi,j,p − bi,j−1,p). (7)

Fig. 4 illustrates an example of the min-up time and mode tran-
sition constraints.

3.4. Mode transition constraints

By mode transition restrictions we refer to the situation in
which the activation of one control bi1,j,p excludes some control
indices i2 from activation in the time step j + l, l ≥ 1:

b = 1 ⇒ b = 0.
i1,j,p i2,j+l,p
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hese restrictions are motivated by the dual-clutch gearbox at
and. This can switch one gear up or down per second, which
s independent from the active phase. In practice, the driver
an use the time during the electric mode to change the gear
etting; however, it is limited by one gear shift per second. For
ll index tuples, (ia, pa), ia ∈ [nb], and pa ∈ [np] representing the
ctive mode and phase, we introduce the allowed control indices
‘neighborhood’’ for l = 1, . . . , 5 as:

N (ia, pa, l) := {(i, p) | p ∈ [np],

i = max{1, ia − l}, . . . ,min{nb, ia + l}}.

hen, we define the constraint for j = 1 + l, . . . ,N as:

≥ bia,j−l,pa +

∑
(i,p)/∈N (ia,pa,l)

bi,j,p. (8)

. Solving combinatorial constrained multiphase mixed-
nteger control problems

Our algorithmic idea is to apply the theory of CIA decompo-
itions (Sager, 2009; Zeile et al., 2018) for MIOCPs. We provide
n intuition of this decomposition before providing a problem
pecific CIA algorithm.

.1. Intuition of CIA decomposition theory

The difference of Problem 1 compared to the usual MIOCP
Sager, 2009) is the dependency of fi on the current (given) phase
(t). If we set fi(p, ·) to zero outside the corresponding phase p
or all i ∈ [nb]0, we obtain an equivalent MIOCP with np · (nb + 1)
odes. In this way, each phase induces nb + 1 additional modes.
hus, we can equivalently transform a multiphase MIOCP into an
IOCP by requiring for the binary controls:

i,j,p = 0, for all i ∈ [nb]0, j ∈ [N] if p(tj−1) ̸= p. (9)

e note that the above constraint corresponds to a simple vari-
ble fixing in Problem 3 because p(tj−1) is known beforehand
rom Eq. (2). Discretized MIOCPs result in mixed-integer non-
inear programs (MINLPs), which are generally NP-hard (Belotti
t al., 2013), and can only be solved with methods such as BnB
nder great computational effort. The CIA decomposition suggests
o approximate the resulting MINLP by a sequence of subprob-
ems in which each one is less hard to solve than the original
roblem. In particular, we consider the canonical relaxation of the
INLP by dropping its integrality constraint, which results in the

ollowing NLP.

roblem 2 (NLP).We refer to the Problem (NLP) as the discretized
roblem 1 with outer convexified dynamics (4a)–(4b) and relaxed
inary controls a∈[0, 1](nb+1)×N×np instead of b∈{0, 1}(nb+1)×N×np .

After solving (NLP), we obtain relaxed values a, which we
ant to round in an appropriate way in order to construct a

easible solution for Problem 1 that exhibits a promising ob-
ective value. Minimizing the maximum accumulated control
eviation, i.e.,

min
i,j,p∈{0,1}

max
i∈[nb]0,

k∈[N], p∈[np]

⏐⏐⏐⏐⏐⏐
k∑

j=1

(ai,j,p − bi,j,p)∆tj

⏐⏐⏐⏐⏐⏐ (10)

esults in such a rounding, as proven in Sager et al. (2011).
his problem neglects the system’s dynamics and can be re-
ormulated into an MILP that takes into account combinatorial
onstraints. This MILP constitutes the combinatorial integral ap-
roximation (CIA) problem, which we now introduce formally in
he multiphase setting.

roblem 3 (Multiphase CIA). Let a ∈ [0, 1]np×(nb+1)×N be given
together with min-up times U for each coupled control set S .
Sc c

5

We define the multiphase CIA (MCIA) problem as

minimize
ζ ,b

ζ

s. t.
nb∑
i=0

np∑
p=1

bi,j,p, = 1, j ∈ [N],

±

k∑
j=1

(ai,j,p − bi,j,p)∆tj ≤ ζ , i ∈ [nb]0, k ∈ [N], p ∈ [np],

Prefixing constraint (6), Dwell time constraint (7),
Mode transition constraint (8), Phase constraint (9).

The first constraint in (MCIA) ensures that exactly one mode
and phase is active for all intervals, whereas the second constraint
is a reformulation of Eq. (10). The standard CIA decomposition
consists of three steps:

(1) Solve (NLP) → x, u, a;
(2) Solve (MCIA) → b;
(3) Solve (NLP) with fixed b → x, u.

The objective value of the second (NLP) serves as an approxima-
tion of the exact discretized MIOCP. Nevertheless, the approach
is favorable for application here due to its enormous reduction of
the run time (Zeile et al., 2018) and since Theorem 6.3 from Sager
(2009) established a convergence result of the approximative to
the optimal solution by refining the discretization grid. In the
next subsection, we generalize the CIA decomposition and prove
that this convergence result still holds.

4.2. A tailored CIA decomposition algorithm

The large number of binary variables in ‘‘all-at-once’’ rounding
in (MCIA) can lead to an infeasible NLP related to terminal, path,
or vanishing constraints that cannot be met. Therefore, our idea
is to apply more than one rounding step in order to achieve more
freedom with respect to achieving a feasible solution. To this end,
we propose to solve a sequence of alternating (NLP) and (MCIA)
problems where the number of fixed binary variables is gradually
increased. The next definition formalizes this idea.

Definition 4 (Binary Subset CIA-NLP Sequence). Let S1 := {(i, p) |

i ∈ [nb]0, p ∈ [np]} be the index set of all binary control variables.
e denote by Sj, j = 2, . . . , ndec, with ndec ≤ np ·(nb+1) a chosen

equence of binary control index subsets Sndec ⊂ . . . ⊂ S2 ⊂ S1.
e define CIA(Sj), j = 1, . . . , ndec−1 as (MCIA), where the binary
ariables with indices out of Sj are optimized with the according
nput values a. Analogously, NLP(Sj) refers to (NLP), where we
elax all bi,p, (i, p) ∈ Sj and all bi,p, (i, p) ∈ S1\Sj are considered
o be fixed with values from CIA(Sj−1). Furthermore, let Sndec := ∅.

We present in Algorithm 1 a tailored version of the CIA de-
omposition that consists of solving ndec NLPs and ndec − 1 CIA
roblems with gradually decreased number of free binary con-
rols as given in Definition 4. We illustrate this algorithm in Fig. 5,
here we also give reference to the used solver software.

ssumption 5. The values a obtained from solving NLP(Si ), i =

, . . . , ndec − 1 are almost combinatorial in the sense that each
IA(Si), i = 1, . . . , ndec − 1 has an objective ζi that is bounded
y:

i ≤ Ci · ∆t, ∆t := max
j∈[N]

∆tj,

ith constants Ci > 0 so that ζi vanishes with ∆t → 0.
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Fig. 5. The concept of Algorithm 1 is to solve MIOCPs and thereby Problem 1. After outer convexification and discretization, we obtain an MINLP, which we relax by
emoving the integrality constraint. The algorithm involves solving a sequence of alternating CIA and NLP problems. The number of free variables in these problems
re represented by Sj according to the binary subset CIA-NLP sequence in Definition 4 and is gradually reduced until all variables a are fixed in (NLP(Sndec )). The
bjective value of the latter problem serves as an approximation to (MINLP); however, it can be calculated much faster by this algorithm. We achieve local minima
f the NLPs by using IPOPT (Wächter & Biegler, 2006), while we apply the BnB solver of pycombina (Bürger et al., 2020) to obtain the global optimal solutions of
he CIA problems.
Algorithm 1 CIA decomposition for solving Problem 1

Input: Discretized Problem 1 with time grid GN .
utput: (Local) optimal variables x∗, u∗, b∗, with objective value

L∗
:= J(x∗, u∗, b∗).

1: Solve NLP(S1) → x, u, a, L(S1).
2: for i = 2, . . . , ndec do
3: Solve CIA(Si−1) → b;
4: Solve NLP(Si) → x, u, a, L(Si);
5: return : (x∗, u∗, b∗,L∗) = (x, u, b,L(Sndec ));

Remark 6. Assumption 5 is not restrictive for the case without
dwell time or mode transition constraints, see Sager et al. (2011).
Since we include these constraints in (MCIA), this assumption is
critical. Therefore, we argue that it is advantageous in technical
practice to adhere to mode transition and dwell time rules and
the proposed model transfers these technical relationships to the
structure of a.

We adopt Theorem 6.3 from Sager (2009) and provide the
theoretical justification for Algorithm 1.

Theorem 7 (Convergence Result for Algorithm 1). Let fi be es-
sentially bounded by M1 on [0, T ] for i ∈ [nb]0. In addition, let
the time derivative of fi be essentially bounded on [0, T ] by M2.
When we apply Algorithm 1 with a vanishing grid length and under
Assumption 5, the rounding gap also vanishes, i.e.:

|L(S1) − L(Sndec )|
∆t→0
→ 0.

proof. Note first that the functions fi are Lipschitz continuous
since they are assumed to be smooth. We denote by CL > 0 their
maximal Lipschitz constant. From Theorem 4.1 in Sager (2009),
the differential state approximation error for a single rounding
step is bounded in the sense of:

∥xrel(t) − xbin(t)∥ ≤ ((M1 + M2 · (t − t0))ζ ) eCL(t−t0),

where ζ is the objective value of the CIA problem, xrel is the
differential state trajectory received by using the relaxed controls
a and xbin the one using binary controls b. We transform this
result to our setting in which xSi denotes the trajectory based
on solving NLP(Si), i ∈ [ndec]. Thus, we obtain:

∥ xS1 (t) − xSndec
(t) ∥= · · ·

= ∥xS1 (t) − xSndec
(t) +

ndec−1∑
i=2

(xSi (t) − xSi (t))∥

≤

ndec∑
∥xSi−1 (t) − xSi (t)∥
i=2

6

≤

ndec∑
i=2

((M1 + M2 · (t − t0))ζi) eCL(t−t0)

=

(
(M1 + M2 · (t − t0))

ndec∑
i=2

ζi

)
eCL(t−t0)

≤

(
(M1 + M2 · (t − t0))

ndec∑
i=2

Ci · ∆t

)
eCL(t−t0)

→ 0, with ∆t → 0.

In the penultimate approximation step, we took advantage of
Assumption 5. Finally, the claim follows by the continuity of the
objective function J . ■

Theorem 7 states that Problem 1 can be approximated ar-
bitrarily well by Algorithm 1 using grid refinement. Compared
to the original CIA decomposition, the rounding error is slightly
larger due to (possibly) several rounding steps. In return, we
obtain the desired effect in relation to constructing a feasible
solution.

5. Numerical results

We perform a case study of Problem 1 and Algorithm 1 ap-
plied on the WLTP, which represents a real and challenging
optimization problem due to a long time horizon and the frequent
activation of vanishing constraints. Before that we show exem-
plarily how the relaxed and binary controls behave as part of the
CIA problem in connection with the combinatorial constraints.

5.1. Used hardware and software

All computations were conducted on a Dell XPS15 desktop
PC with an Intel Core i7-6700HQ CPU and 16 GB RAM running
Ubuntu 16.04. To parse the NLPs we used CasADi 3.4.5 (Andersson
et al., 2019) within the Python 2.7 environment, while the solu-
tion is provided by the sparse NLP solver IPOPT 3.12.3 (Wächter &
Biegler, 2006), running the linear solver MA97 from HSL (2018).
We applied pycombina2 (Buerger et al., 2019) to solve the CIA
problems. pycombina is an open-source software package de-
signed for such MILP problems since its BnB algorithm exploits
the specific min-max structure of Eq. (10) and has been proven
to be up to three orders of magnitude faster than standard MILP
solvers (Bürger et al., 2020).

5.2. Exemplary CIA rounding step

We illustrate the functionality of the CIA problem with the
driving cycle from Fig. 2. After solving NLP(S1), we obtain the
relaxed binary control values a, which we depict in Fig. 6 with

2 see https://github.com/adbuerger/pycombina

https://github.com/adbuerger/pycombina
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Fig. 6. Relaxed values a from NLP(S1) and binary values b obtained by CIA(S1)
s an exemplary CIA rounding solution. The gray background indicates that the
CE is turned on, i.e., the vehicle is operated in the hybrid mode.

he dashed lines. By observing this figure, the solution is almost
f bang–bang type. We require a min-up time of USc = 5 s for both
he electric and the hybrid mode. Whereas the relaxed solution
atisfies already the mode transition constraint, this is not the
ase regarding the min-up time constraints.
In the next step, we solve CIA(S1) so that we obtain binary

alues b that fulfill all combinatorial constraints, as depicted
ith the gray lines in Fig. 6. The binary values approximate the
elaxed ones quite well and the few differences are mainly due to
he min-up time. For instance, this can occur during the second
ctivation of the electric mode.

.3. Case study with the WLTP driving cycle

The velocity profile of the WLTP driving cycle is given in
ig. 7. We solve Problem 1 applied to this driving cycle with
lgorithm 1 and ndec = 2, 3 decomposition steps. Moreover, we
et umin = −1 as a lower bound for the torque split control. The
ase ndec = 2 refers to the standard CIA decomposition, where
e used a predefined gearshift profile obtained by applying a
euristic algorithm3 and we therefore optimize only the binary
hoice between the electric and hybrid mode. For the algorithmic
ase ndec = 3 we first optimize the gear and electric mode
hoices, i.e., S1 = {(i, p) | i ∈ [nb]0, p ∈ [np]}. Afterwards, we fix

3 The heuristic gearshift strategy is speed-dependent, which reflects a normal
river’s behavior. When the ICE speed is above or below a certain threshold
here will be an upshift or downshift, respectively.
7

Table 1
Comparison of the normalized objective function J and the run time (CPU) for
the solution of Problem 1 obtained by dynamic programming and the NLPs from
Algorithm 1, with either optimized or predefined gear choices and varying dwell
time constraints for the WLTP driving cycle.
Problem DTC: 1 s DTC: 5 s

J [-] CPU [s] J [-] CPU [s]

Algorithm 1, optimized gearshift
NLP(S1) 0.8528 3190 0.8528 3190
NLP(S2) 0.8530 872 0.8592 1041
NLP(S3) 0.8534 263 0.8655 993

Algorithm 1, predefined gearshift
NLP(S1) 0.9702 1102 0.9702 1102
NLP(S2) 0.9703 283 1.0000 769

Dynamic Programming, optimized gearshift
– 0.8662 76910 – –

Dynamic Programming, predefined gearshift
– 0.9852 10803 – –

all gear choice variables in the second NLP and CIA problem,
i.e., we set S2 = {(i, p) | p ∈ [np], i = 0} to achieve optimization
etween the electric and hybrid mode and, complementary, we
ix the gearshift pattern found in the previous step and use
t as an exogenous variable in NLP(S2). To compare the pro-
osed algorithm with a method constructing a global optimal
olution, we solved Problem 1 also with a backward dynamic
rogramming approach (Wang et al., 2015); however, we skip
etailed dwell-time scenarios since this is beyond the scope of
his research.

We collect in Table 1 the values of the normalized total fuel
onsumption of the three approaches with varied minimum dwell
imes from one to five seconds. The objective value increases
rogressively from the first to the last NLP required to solve the
roblem, as expected from Theorem 7. In addition, the fuel con-
umption increases with increasing dwell times, which involves a
ubstantially decreased number of switches (from 54 to 41); thus,
roviding a better driveability. When comparing the predefined
nd optimized gearshift scenarios, we obtain for the latter savings
f 13.45% and 12.05% for the fuel consumption when the dwell
ime constraint (DTC) is set to 5 s and 1 s, respectively. Note that
his comes at the expense of an increased run time, since a total
f 4325 s instead of 1385 s is required to optimize the gearshift
hen the DTC is set to 1 s. We left out the run times of the CIAs,
ecause the tailored BnB feature of pycombina runs only for a
ew seconds. Dynamic Programming is meant to provide globally
ptimal solutions. However, in a practical implementation, the
olution x(ti+1) of a forward integration on time interval [ti, ti+1]

s usually different from the values in the state space tabula-
ion. This effect, possibly increased by using different integration
chemes, is also the reason why in our implementation the ob-
ective function value of the Dynamic Programming solution has
higher objective function value than the one found by our
irect optimization approach. Nevertheless, we see the similarity
f the found solutions as an indication for the quality of our new
pproach.
Fig. 7 presents the evolution of the state and control trajec-

ories for both the predefined and optimized gearshift scenarios
or Algorithm 1. It is worth noting how the variation of the state
rofiles between NLP(S1) and NLP(S2) (6th plot in Fig. 7) is more
ronounced by considering the optimization of the gearshift. This
s mainly due to the enforcement of combinatorial constraints
fter CIA(S1). The difference from NLP(S2) to NLP(S3) is marginal
ince a negligible rearrangement of the switching is needed in
IA(S ). Finally, it can be observed in Fig. 8 how the optimal
2
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Fig. 7. Top: velocity profile for the WLTP driving cycle. Plots 2–9: profiles of the state-of-charge for the battery ξ , the ICE cooling temperature θ , the torque split u
and the gear choice Γ of the solutions obtained with the predefined and optimized gearshift approaches of Algorithm 1 and with a minimum dwell time equal to
five seconds. We imposed the constraints ξ (tf ) = 0.6 and 0.4 ≤ ξ (t) ≤ 0.7.
control solutions translate into different operating points of the
electric drive (ED, electric motor plus inverter) and ICE. The
optimized gearshift entails a higher gear selection in comparison
to the predefined gears; thus, allowing the ICE to operate with
a greater torque and a lower speed within a higher efficiency
region. On the other hand, the difference among the operating
points of the ED is negligible, since the EM is directly coupled
through a constant transmission ratio to the final drive shaft.
8

6. Conclusions

This study presents a tailored CIA decomposition to address
the solution of multiphase MIOCPs applied to the EMS for an
HEV. Our algorithm is able to cope with a general problem class
including multiphase, vanishing, state and combinatorial con-
straints. We proved that the algorithm constructs under certain
assumptions a near-optimal solution since the optimal solution
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Fig. 8. ICE and ED operating points of the WLTP driving cycle for the predefined
and optimized gear selection scenarios. The speed, torque, and efficiency (right
color bar) have been normalized for confidentiality reasons. The continuous black
line depicts the torque limits.

can be approximated arbitrarily well by refining the discretization
grid. This study showcased the effectiveness of our approach for
the realistic WLTP driving cycle. It also demonstrated accurate
solutions with reasonable run times, which makes it possible to
benchmark causal controllers or to objectively compare different
powertrain architectures. The findings from this research can be
beneficial to researchers and professionals that work in the field
of hybrid electric vehicles. Future work may address the on-
line application of the proposed algorithm, more sophisticated
approaches to include terminal or path constraints and other
gearbox settings.
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