Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/35018
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLe, Thuy Thi-Thien-
dc.contributor.authorJost, Felix-
dc.contributor.authorSager, Sebastian-
dc.date.accessioned2020-11-11T09:37:13Z-
dc.date.available2020-11-11T09:37:13Z-
dc.date.issued2020-
dc.date.submitted2018-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/35220-
dc.identifier.urihttp://dx.doi.org/10.25673/35018-
dc.description.abstractWe analyze the maximal output power that can be obtained from a vibration energy harvester. While recent work focused on the use of mechanical nonlinearities and on determining the optimal resistive load at steady-state operation of the transducers to increase extractable power, we propose an optimal control approach. We consider the open-circuit stiffness and the electrical time constant as control functions of linear two-port harvesters. We provide an analysis of optimal controls by means of Pontryagin’s maximum principle. By making use of geometric methods from optimal control theory, we are able to prove the bang–bang property of optimal controls. Numerical results illustrate our theoretical analysis and show potential for more than 200% improvement of harvested power compared to that of fixed controls.eng
dc.format.extent1 Online-Ressource (18 Seiten, 1,1 MB)-
dc.language.isoeng-
dc.publisherSpringer, Dordrecht-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectOptimal controleng
dc.subjectPontryagin’s maximum principleeng
dc.subjectSwitching functioneng
dc.subjectEnergy harvestingeng
dc.subjectPower optimizationeng
dc.subject.ddc519.6-
dc.titleOptimal control of vibration-based micro-energy harvesterseng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-352204-
dc.relation.referenceshttp://link.springer.com/journal/10957-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleJournal of optimization theory and applications-
local.bibliographicCitation.volume179-
local.bibliographicCitation.issue2018-
local.bibliographicCitation.pagestart1025-
local.bibliographicCitation.pageend1042-
local.bibliographicCitation.publishernameSpringer-
local.bibliographicCitation.publisherplaceDordrecht-
local.bibliographicCitation.doi10.1007/s10957-018-1250-4-
local.openaccesstrue-
dc.identifier.ppn1738417530-
local.publication.countryXA-NL-
cbs.sru.importDate2020-11-11T09:31:50Z-
local.bibliographicCitationSonderdruck aus Journal of optimization theory and applications-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Mathematik (OA)

Files in This Item:
File Description SizeFormat 
Sager_et al._J Optim Theory Appl_2020.pdfZweitveröffentlichung1.1 MBAdobe PDFThumbnail
View/Open