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Abstract We analyze the maximal output power that can be obtained from a vibration
energy harvester. While recent work focused on the use of mechanical nonlinearities
and on determining the optimal resistive load at steady-state operation of the trans-
ducers to increase extractable power, we propose an optimal control approach. We
consider the open-circuit stiffness and the electrical time constant as control functions
of linear two-port harvesters. We provide an analysis of optimal controls by means
of Pontryagin’s maximum principle. By making use of geometric methods from opti-
mal control theory, we are able to prove the bang–bang property of optimal controls.
Numerical results illustrate our theoretical analysis and show potential for more than
200% improvement of harvested power compared to that of fixed controls.
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1 Introduction

Most of the energy used in electronics and sensor applications is supplied by bat-
teries, which are very limited in operational lifetime. Additionally, there are several
environments where battery performance is especially limiting. Energy harvesting
therefore becomes a key alternative for replacing battery roles in autonomous sensor
networks [1,2]. Due to the capability of providing electrical power harvested from
mechanical vibration sources for electronic devices, energy harvesters are more and
more central to recent research. Energy storage cells such as rechargeable batteries
or super-capacitors cannot intrinsically ensure optimal power generation if directly
connected to rectifier output. A solution for the power optimization problem was pro-
posed by Ottman et al. [3], using a dc-dc converter interleaved between the rectifier
and the storage cells. They have shown that the optimal power point can be tracked
by controlling the converter input average resistance. The power of a vibration-based
generator strongly depends on the load. The power is maximized by matching load
resistances, whose values are determined by the transducer figure of merit, external
acceleration and vibration frequency [4]. A detailed discussion of optimizing power
generated by a velocity damped resonant generator (VDRG), taking into account both
of mechanical damping and electrical damping, is reported by Mitcheson et al. [5].
In summary, for unconstrained displacement or small forcing levels, and significant
mechanical damping, the harvested power can be maximized by designing the electri-
cal damping equal to the mechanical damping while the drive frequency is kept fixed
at resonant frequency. A bound on the output power of vibration energy harvesters
when the proof mass is subject to parasitic, linear mechanical damping is determined
in closed form [6]. Halvorsen et at. proved that the optimal VDRG performance for
a single sinusoid forcing coincides with the bound when the displacement is uncon-
strained. The same methodology is used to find the upper bound as a function of input
vibration parameters with two more additional study cases, double sinusoid input and
frequency-swept sinusoid input [7]. An analytical expression of the optimal load and
stiffness of a linear two-port harvester driven by harmonic force under displacement-
constrained operation was obtained in [8]. With the same perspectives, the optimal
gap and load of the micro-electricity generator are also proved to be dependent on the
proof mass displacement amplitude versus its limit [9].

Several efforts to optimize the scavenged power can be listed, such as analyti-
cal solutions and experimental validations of distributed-parameter optimization in
piezoelectric energy harvesting by Erturk et al. [10]. An advanced device concept for
micro-scale electrostatic energy harvester utilizing active end-stops as secondary trans-
ducers is reported by Le et al. [11]. von Büren and Tröster [12] developed a two-stage
optimization method which allows optimization of geometry, resonance frequency
and electrical load for a linear electromagnetic micro-power generator architecture.

However, research work mentioned above only examines the energy balance of
the harvesting systems in steady state, which allows us to neglect the kinetic energy
of the proof mass and the potential energy stored in the transducers. If the external
driving force contains an amplitude that is varying over time, the complex conjugate
matching method no longer works. Such situations will be investigated in this paper.
From the mathematical point of view, the linear two-port model consists of a strongly
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stiff system of ordinary differential equations (ODEs) due to the high frequency of the
displacement. This causes difficulties in solving the problem numerically. Therefore,
obtaining the approximate optimal power is a demanding task. The question of which
values the stiffness and the electrical time constant should take in order to obtain
maximized output power is studied analytically by classical methods in control theory,
namely Pontryagin’s maximum principle and geometric methods of optimal control
theory, see for instance [13,14]. Some applications of these methods for investigating
optimization problems in medicine can be mentioned, such as antiangiogenic therapy
in cancer treatment [15], the optimal delivery of combination therapy for tumors
[16], a multi-input optimal control problem for combinations of cancer chemotherapy
with immunotherapy in form of a boost to the immune system [17], or in optimal
experimental design problems [18]. Their applications in economics can be found in
[19,20].

The structure of this paper is as follows. First, the linear two-port model is intro-
duced. Then the analysis of optimal controls for this model is presented. We finally
end up with solving the power optimization problems numerically under different
settings with and without constraints, together with a discussion to show how the
numerical results confirm our theoretical analysis and howmuch the output power can
be improved by our approach.

2 Mathematical Model

An example of a real electromechanical system is an overlap varying capacitance
structure. The basic configuration of such an electrostatic energy harvester is shown
in Fig. 1. The design consists of a proof mass suspended by four linear springs. The
transducers are operated by an external bias voltage connected to the movable mass.
The output power is harvested by conversion from mechanical to electrical energy
using capacitive transduction. The fixed electrodes are connected directly to external
loads. Due to practical restrictions on device dimensions, mechanical end-stops are
used to limit the proof mass motion and avoid beam fracture.

Fig. 1 An electrostatic in-plane
overlap varying energy
harvester, an example of an
electromechanical transducer

123



1028 J Optim Theory Appl (2018) 179:1025–1042

Fig. 2 Electrical equivalent
circuit of the linear two-port
model

Transducers with three common mechanisms, i.e., piezoelectric, electrostatic and
electromagnetic conversions, can be described by the linear two-port model with a
single degree of freedom. The harvester is now no longer represented by complex
differential equations and boundary conditions, but by a lumped-element circuit [21].
The elements are representatives of the transducer properties such as mass, stiffness,
parasitic damping and variable capacitance. Equivalent circuits are widely used nowa-
days along with powerful mathematical techniques and network analysis programs,
for instance LT-SPICE (Simulation Program with Integrated Circuit Emphasis) which
is used to generate a reference solution in Sect. 4. Typically, an electrostatic energy
generator can be modeled as a kinetic harvester with a generic transducer force FT
acting on the proof mass. The linear two-port equations for such a harvesting system
are expressed as in [8]

FT(t) = Kx(t) + Γ

C
q(t), V (t) = Γ

C
x(t) + 1

C
q(t) (1)

where K is the open-circuit stiffness, x(t) is the displacement, q(t) is the charge on
the electrode, C represents the variable capacitor, Γ is the transduction factor and
V (t) is the voltage across the electrical port. Figure 2 depicts the equivalent circuit of
the electrostatic generator, whereas the inertial mass m is subject to external forcing
function F(t) and the parasitic damping b. A load resistance R is connected directly
to the electrical terminal. The short circuit stiffness K0 is related to the open-circuit
stiffness K by K0 = (1 − k2)K , where the coupling factor is given by k2 = Γ 2

KC .
Considering the open-circuit stiffness and the load resistance as time-dependent

functions, the power optimization problem on a fixed time horizon [t0, tf ] is formulated
as follows

max
x(t),V (t),R(t),K (t)

(
1

tf − t0

∫ tf

t0

V (t)2

R(t)
dt

)

subject to

mẍ(t) = −
(
K (t) − Γ 2

C

)
x(t) − bẋ(t) − V (t)Γ + mF(t),

V̇ (t) = Γ

C
ẋ(t) − 1

R(t)C
V (t),

K (t) ∈ [K , K ], R(t) ∈ [R, R],
(x(t0), V (t0)) = (x0, V0)

(2)
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where 0 ≤ t0 < tf < +∞, K > Γ 2

C > 0, R > 0, K , R < +∞ and either

F(t)=Fa(t) = Artg cos(ωt) or F(t) = Ff(t) = Acg cos

(
ω0t + 1

2
ωrt

2
)

(3)

with ω is the drive angular frequency, g is the gravitational acceleration, Ar = �A
�t =

Af−A0
tf−t0

has units of g s−1, ωr = �ω
�t = ωf−ω0

tf−t0
has units of rad s−2, where A0 (ω0)

and Af (ωf) are acceleration amplitudes (angular frequencies) at t0 (tf), respectively.
The value of Ac is kept fixed. The preceding problem containing a second-order
ordinary differential equation (ODE) can be reduced to the one with merely first-order
ODEs equivalently by introducing an auxiliary variable. Moreover, for convenience,
let u1(t) = K (t), u2(t) = 1

R(t) . The optimization problem (2) is transformed to the
following one.

max
x(t),y(t),V (t),u1(t),u2(t)

(
1

tf − t0
P(tf)

)
subject to

ẋ(t) = y(t),

ẏ(t) = − 1

m

(
u1(t) − Γ 2

C

)
x(t) − b

m
y(t) − V (t)Γ

m
+ F(t),

V̇ (t) = Γ

C
y(t) − u2(t)

C
V (t),

Ṗ(t) = V (t)2u2(t),

u1(t) ∈ [u1, u1], u2(t) ∈ [u2, u2](
x(t0), y(t0), V (t0), P(t0)

) = (x0, y0, V0, 0)

(4)

where u1 = K , u2 = 1/R, u1 = K and u2 = 1/R are all positive constants.

3 Analysis of Optimal Controls

3.1 Pontryagin’s Maximum Principle

Let us start by introducing some terminology used in this work. A control
u : [t0, tf ] → [u, u]only switching between the lower andupper bounds of the compact
control set, i.e., u and u, is called bang–bang, while it is called singular, if u(t) takes
values in the interior of the control set.We introduce X (t) = (x(t), y(t), V (t), P(t))T,

u(t) = (u1(t), u2(t))T and

f (X (t), t) =
(
y(t),

Γ 2x(t)

mC
− by(t)

m
− Γ V (t)

m
+ F(t),

Γ y(t)

C
, 0

)T

,

g1(X (t)) =
(
0,− x(t)

m
, 0, 0

)T

, g2(X (t)) =
(
0, 0,−V (t)

C
, V (t)2

)T

,
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then the system of ODEs in (4) becomes

Ẋ(t) = f (X (t), t) + g1(X (t))u1(t) + g2(X (t))u2(t) := Rd(X (t), t, u(t)). (5)

Let us first recall the first-order necessary conditions for optimality of controls
u1(t), u2(t) given by the classical Pontryagin’s maximum principle (PMP) [13,14].
The PMP says that, if u�

1(t), u
�
2(t) are optimal controls with the corresponding optimal

trajectories (x�(t), y�(t), V �(t), P�(t))T on the interval [t0, tf ], there exist a constant
p0 > 0 and an absolutely continuous adjoint vector p : [t0, tf ] → R

4 such that

(P1) Nontriviality of the multipliers: (p0, p(t)) �= 0 for all t ∈ [t0, tf ],
(P2) Adjoint equations: p(t) is the solution of the following adjoint equations

ṗ1(t) = −p2(t)

(
Γ 2

Cm
− u�

1(t)

m

)
,

ṗ2(t) = −p1(t) + p2(t)
b

m
− p3(t)

Γ

C
,

ṗ3(t) = p2(t)
Γ

m
+ p3(t)

u�
2(t)

C
− 2p4(t)u

�
2(t)V

�(t),

ṗ4(t) = 0,

(6)

together with the transversality condition p(tf) = (0, 0, 0, p0).
(P3) Maximum condition: the optimal controls u�

1(t), u
�
2(t) maximize the Hamilto-

nian H

H(X (t), p(t), t, u(t)) = 〈
p(t), f (X (t), t) + g1(X (t))u1(t) + g2(X (t))u2(t)

〉
along (p(t), x�(t), y�(t), V �(t), P�(t)) over [u1, u1] and [u2, u2], respectively,
in particular

H(X (t)�, p(t), t, u�(t))

= max
u1(t)∈U1,u2(t)∈U2

〈
p(t), f (X (t)�, t) + g1(X (t)�)u1(t) + g2(X (t)�)u2(t)

〉
∀t ∈ [t0, tf ], where U1 = [u1, u1], U2 = [u2, u2].

3.2 Synthesis of Optimal Controls via Switching Functions

Let us rewrite the Hamiltonian as

H(X (t), p(t), t, u(t)) = 〈
p(t), f (X (t), t)

〉 + Φ1(t)u1(t) + Φ2(t)u2(t),

where Φ1(t) = 〈
p(t), g1(X (t))

〉
, Φ2(t) = 〈

p(t), g2(X (t))
〉
. The structures of the

optimal controls are determined by the properties of the switching functions

123



J Optim Theory Appl (2018) 179:1025–1042 1031

Φ1(t), Φ2(t). As long as Φ1(t), Φ2(t) are not zero, due to the maximum condition
(P3) of PMP, the optimal controls are given by

u�
1(t) =

{
u1, if Φ1(t) < 0,

u1, if Φ1(t) > 0,
u�
2(t) =

{
u2, if Φ2(t) < 0,

u2, if Φ2(t) > 0.
(7)

The optimal controls cannot be determined directly by the maximum condition if
Φ1(t), Φ2(t) are equal to zero on a sub-interval with positive measure. In this case,
some information about the structures of optimal controls can be obtained by analyzing
the time derivatives of the switching functions, see, e.g., [13, Chapter 2].

In general, the optimal controls are synthesized from potential candidates of opti-
mality which are concatenations of bang–bang and singular arcs via the analysis of
the zero sets of Φ1(t), Φ2(t)

Z1 = {
t ∈ [t0, tf ] : Φ1(t) = 0

}
,

Z2 = {
t ∈ [t0, tf ] : Φ2(t) = 0

}
.

3.3 Analysis of Optimal Controls

Observe that the vector (p0, p(t)) can be normalized since p0 > 0. Therefore, without
loss of generality, we assume that p0 = 1 which leads to p4(t) = 1 for all t ∈ [t0, tf ].
In the following, we will prove that Z1, Z2 are countable, i.e., Φ1(t), Φ2(t) have
countable switchings. Consequently the potential candidates of the optimal controls
u1(t), u2(t) for the problem (4) are of bang–bang type. We have

Φ1(t) = 〈
p(t), g1(X (t))

〉 = −p2(t)
x(t)

m
,

Φ2(t) = 〈
p(t), g2(X (t))

〉 = −p3(t)
V (t)

C
+ p4(t)V (t)2 = −p3(t)

V (t)

C
+ V (t)2.

It is easy to obtain the first derivatives of Φ1(t) and Φ2(t) as

Φ̇1(t) = p1(t)
x(t)

m
− p2(t)

(
bx(t)

m2 + y(t)

m

)
+ p3(t)

Γ x(t)

Cm
,

Φ̇2(t) = −p2(t)
Γ V (t)

Cm
− p3(t)

Γ y(t)

C2 + 2Γ V (t)y(t)

C
.

Obviously, if Φ1(t) = 0 and Φ̇1(t) �= 0 (Φ2(t) = 0 and Φ̇2(t) �= 0), u1(t) (u2(t))
switches between u1 and u1 (u2 and u2). We are going to show that there exists no
time interval on which both Φ1(t) and all its derivatives of Φ1(t) vanish, i.e., u1(t)
is a bang–bang control. Similarly, we will point out that u2(t) is also a bang–bang
control.

Remark 3.1 There exists no time interval (t1, t2) ⊂ [t0, tf ] on which V (t) ≡ 0,
∀t ∈ (t1, t2) since otherwise the system of ODEs in (4) has no solution for any controls
u1(t), u2(t) and either of the nonzero external forces in F(t) (3).
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Proposition 3.1 The switching function Φ1(·) has a countable number of switchings
over [t0, tf ] and therefore the optimal control u1(t) is of a bang–bang type.

Proof We are going to prove this proposition by assuming contradictorily that there
exists (t1, t2) ⊂ [t0, tf ] on which Φ1(t) and all its derivatives vanish. We have

Φ1(t) = −p2(t)
x(t)

m
= 0,

which leads to either p2(t) = 0 or x(t) = 0.

(i) if p2(t) = 0, then owing to (6) we have

ṗ1(t) = 0,

ṗ2(t) = −p1(t) − p3(t)
Γ

C
,

ṗ3(t) = p3(t)
u2(t)

C
− 2u2(t)V (t),

p4(t) = 1.

Since p2(t) = 0 on (t1, t2), ṗ2(t) = 0. Thus from the above system we derive
p1(t) = −p3(t)

Γ
C , therefore Φ̇1(t) = 0.

By differentiating both sides of p1(t) = −p3(t)
Γ
C and taking into account

ṗ1(t) = 0, we obtain ṗ1(t) = − ṗ3(t)
Γ
C which implies ṗ3(t) = 0 and p3(t) =

2CV (t) for u2(t) �= 0. Therefore, V̇ (t) = 0 which means V (t) = V (t1) = Vc,
where Vc is a nonzero constant due to Remark 3.1 and Vc does not depend on
u2(t) with t ∈ (t1, t2). Since Ṗ(t) = V (t)2u2(t) = V 2

c u2(t) over (t1, t2), see (4),
in order to gain the maximum power u2(t) has to be chosen as the upper bound,
i.e., u2(t) = u2. This violates (7) since according to (7)

Φ2(t) = 〈
p(t), g2(X (t))

〉 = −V 2(t) = −V 2
c < 0

implies u2(t) = u2. Therefore, there is no time interval on which Φ1(t) and all
its derivatives vanish, i.e., u1(t) switches between u1, u1, or in other words u1(t)
is a bang–bang control.

(ii) if x(t) = 0, p2(t) �= 0, due to (4) we obtain also y(t) = 0 and

V (t) = m

Γ
F(t), V̇ (t) = −u2(t)

C
V (t),

which implies

u2(t) = −Ḟ(t)C

F(t)
(8)

when {t : F(t) = 0} ∩ (t1, t2) = ∅ [since F(t) in (3) has finite zeros on [t0, tf ], it
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is always possible to take (t1, t2) such that the intersection is an empty set]. On
the other hand, if Φ2(t) �= 0, we conclude immediately that u2 is a bang–bang
control due to (7). Otherwise we have Φ̇2(t) = −p2(t)

Γ V (t)
Cm �= 0 on (t1, t2) due

to Remark 3.1 which implies that u2(t) switches finitely between u2 and u2. Both
cases result in a contradiction to (8).

ThereforeΦ1(t) and its derivatives cannot vanish on any time interval (t1, t2) ⊂ [t0, tf ]
which means that u1(t) is only of a bang–bang type. �

Remark 3.2 From a physical point of view, in Case (i) in the proof of Proposition 3.1,
if V̇ (t) = 0 on some interval (t1, t2), in principle u2 = 1

R can be chosen large enough
to maximize the output power. Then

P = 1

t2 − t0

(∫ t1

t0
V (s)2u2(s)ds + (t2 − t1)

V 2
c

R

)
R→0−→ +∞

which is unphysical, i.e., V̇ (t) �= 0.

Similarly, we derive the following proposition which determines the structure of u2(t).

Proposition 3.2 The switching function Φ2(·) has a countable number of switchings
over [t0, tf ], i.e., the optimal control candidate u2(t) is of a bang–bang type.

Proof Assume there exists (t1, t2) ⊂ [t0, tf ] such that Φ2(t) and all derivatives vanish
for every t in (t1, t2). Owing to Φ2(t) = 0 and Φ̇2(t) = 0 we have

p3(t) = CV (t), p2(t) = y(t)m. (9)

By substituting (9) into the adjoint equations in (6), we receive

ṗ1(t) = −y(t)

(
Γ 2

C
− u1(t)

)
, p1(tf) = 0,

ṗ2(t) = −p1(t) + y(t)b − V (t)Γ, p2(tf) = 0,

ṗ3(t) = y(t)Γ − V (t)u2(t), p3(tf) = 0,

p4(t) = 1, p4(tf) = 1.

(10)

Observe after taking the derivative on both sides of p2(t) = y(t)m and using (10) in
connection with the dynamics in (4), we have, for t ∈ (t1, t2),

p1(t) = 2by(t) +
(
u1(t) − Γ 2

C

)
x(t) − mF(t),

ṗ1(t) = −y(t)

(
Γ 2

C
− u1(t)

) (11)
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which has a solution if and only if ẏ(t) = m
2b Ḟ(t) since u1(t) is a bang–bang control,

see Proposition 3.1. Owing to ẏ(t) = m
2b Ḟ(t) and (4), we obtain

m

2b
Ḟ(t) = − 1

m

(
u1(t) − Γ 2

C

)
x(t) − b

m
y(t) − V (t)Γ

m
+ F(t) (12)

or reordered

V (t) =
−

(
u1(t) − Γ 2

C

)
x(t) − by(t) + mF(t) − m2

2b Ḟ(t)

Γ
.

By making use of V̇ (t) = Γ y(t)
C − u2(t)

C V (t) and u̇1(t) = 0 due to Proposition 3.1, we
have

u2(t) = Cu1(t)y(t) − Cm
2 (Ḟ(t) − m

b F̈(t))

−
(
u1(t) − Γ 2

C

)
x(t) − by(t) + mF(t) − m2

2b Ḟ(t)
. (13)

Let Vc, yc, xc be some constants such that the solution of

V̇ (t) = Γ y(t)

C
− u2(t)

C
V (t),

ẏ(t) = m

2b
Ḟ(t), ẋ(t) = y(t)

on t ∈ [t1, t2] reads as follows

V (t) = e− ∫ t
t1

u2(s)
C ds

Vc + Γ

C

∫ t

t1
e− ∫ t

s
u2(v)

C dv y(s)ds,

y(t) = yc + m

2b
F(t),

x(t) = xc + yct + m

2b

∫ t

t1
F(s)ds.

(14)

Moreover, observe that (12) is equivalent to

u1(t) = −by(t) − Γ V (t) + mF(t) − m2

2b Ḟ(t)

x(t)
+ Γ 2

C
. (15)

By subsequently plugging (13), (14) and (3) into (15), u1(t) becomes a function of
u1(t)whose solution, i.e., u1(t), cannot be a constant. This means that u1(t) has to be a
singular control which is a contradiction to Proposition 3.1. Therefore, u2(t) switches
between u2, u2 on (t1, t2). In conclusion, u2(t) is always a bang–bang control. �

Taking into account two of the preceding propositions, we obtain the following result.
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Corollary 3.1 Consider theoptimizationproblem (4), the optimal controls u1(t), u2(t)
are bang–bang.

Proof It is a combination of Propositions 3.1 and 3.2.

4 Numerical Optimization and Discussion

In this section, we present numerical solutions of different optimal control prob-
lems and compare them with reference solutions from LT-SPICE simulations. The
control problems are numerically challenging due to the highly stiff ODE system
and different ranges of parameter values that are involved. As a heuristic, we cal-
culate a suboptimal solution by aggregating N solutions on smaller time horizons
[ti , ti+1], i = 0, . . . , N − 1, instead of solving the optimization problem at once on
the whole time interval [t0, tf ]. We solve the problem (4) on each sub-interval [ti , ti+1]
with the initial state X (ti ) taken from the terminal state solution X (ti ) of the preceding
sub-interval [ti−1, ti ], and X (t0) = (0, 0, 0, 0) , t0 = 0. The numerical results of the
problem (4) on [ti , ti+1] are obtained with the help of the open-source software tool
CasADi [22] with Python interface. The ODE system is discretized and solved by
CVODES from the SUNDIALS integrator suite, see [23] and the obtained nonlinear
optimization problem is solved with IPOPT [24].

Observe that the system ofODEs in (4) is highly stiff due to the high drive frequency
and needs to be approximated by suitable numerical methods with a sufficiently small
time step size. For this particular problem, the time step is chosen to be smaller than
10−5 for the stability of the numerical solutions. The controls u1(t) and u2(t) are
discretized with a step size of 2 × 10−5.

The aggregated trajectory X (·) on [t0, tf ] is not necessarily optimal, but provides an
estimate for the possible improvement compared to state-of-the-art operation. Simu-
lations with fixed controls K (t) = K1 and R(t) = RL can be carried out in LT-SPICE
simulator and are used as reference solutions. The device parameters are adapted from
[25] and listed in Table 1. Parameters of the linear two-port model are then [26]

Table 1 Example parameters
for comb-drive capacitive
transducers

Parameters Value

Proof mass, m 1.5 mg

Linear spring stiffness, km 3 N m−1

Thin-film air damping, b 2.4e–5 Ns m−1

Nominal capacitance, C0 0.47 pF

Parasitic capacitance, Cp 7.5 pF

Load capacitance, CL 8.6 pF

Nominal overlap, x0 10 µm

Load resistance, RL 16.9 M�

Bias voltage, Vb 24.9 V
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C = C0 + Cp + CL

2
, Γ = C0Vb

x0
, K1 = km + 2C2

0V
2
b

x20
(
C0 + Cp + CL

) .

The load resistance RL and the open-circuit stiffness K1 used in the lumped-model
are kept fixed at the optimal value of the linear regime, adapted from [8], while the
mechanical stiffness is a constant achieved from design. We will now consider the
optimal problem in two cases: (i) no restrictions on proof mass motion and (ii) a
constraint for displacement is taken into account.

4.1 Power Optimization for Unconstrained Displacement

Here, we consider the optimal performance of a harvester represented by a mass–
spring–damping system without any limit on mass motion. The displacement x(t)
therefore only depends on the external excitation level, drive frequency and damping
constants [27].

4.1.1 Acceleration Sweep

A sinusoidal acceleration sweep vibration input F(t) = Fa(t) = Artg cos(ωt) is
examined, where t ∈ [t0, tf ] = [0, 1] s, A0 = 0 g and Af = 0.05 g leading to

Ar = 0.05 g s−1. The drive frequency is chosen as ω =
√

K1
m . Figure 3 shows

the parameterized stiffness δk = (K (t) − mω2)/ωb and the electrical time constant
ωτ = ωR(t)C , with K (t) = u1(t) and R(t) = 1/u2(t), after optimization. The bang–
bang behavior of both physically important variables δk and ωτ is identical to the
theoretical analysis in Sect. 3, with δk ∈ [0, 10] and ωτ ∈ [ 1

100 , 1], except for some
control values due to numerical errors.

Figure 4 presents the harvested power achieved with optimized controls compared
to the reference solution with fixed controls from LT-SPICE. The optimized control
strategy improves the harvested power outcome by 227%. The bang–bang character-
istic of the optimal controls is still true for the following case.

4.1.2 Frequency Sweep

In this case study, instead of varying the acceleration amplitude, a linear swept-
frequency cosine signal at the time instances t ∈ [t0, tf ] = [0, 2] s is investigated,
where F(t) = Ff(t) = Acg cos(ω0t + 1

2ωrt2) with Ac = 0.05 g, ω0 = 200π rad s−1

andωf = 800π rad s−1. Thus, the swept rate of angular frequency isωr = 300π rads−2.
The numerical optimization of the output power is depicted in Fig. 5 with more than
five times higher than that of the results obtained from LT-SPICE.

4.2 Power Optimization under Displacement-Constraint Operation

In practical energy harvesters, the proof mass displacement must be restricted to avoid
spring fracture under high input acceleration amplitudes, or to be confined in the finite
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Fig. 3 Closed-view waveforms of the parameterized stiffness δk = (K (t) −mω2)/ωb and the parameter-
ized load ωτ = ωR(t)C

Fig. 4 Numerical optimization result in comparison with simulation obtained from LT-SPICE for the
amplitude sweep of external acceleration
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Fig. 5 Numerical optimization result in comparison with simulation for the frequency-sweep excitation

Fig. 6 Two-port model in LT-SPICE with impact force between the proof mass and the end-stops

dimensions of real structures. This can be implemented by designing mechanical end-
stops. In the LT-SPICE simulation, the impact mechanism during the contact period
is modeled as Hertzian contact force, as shown in Fig. 6. The impact force may then
be written as a function of the relative displacement between the proof mass and the
rigid end-stops δ = ∣∣x(t)∣∣ − Xmax for

∣∣x(t)∣∣ ≥ Xmax, see [28]

Fim = kimδ
3
2

(
1 + 3

4

δ̇

δ̇−
(
1 − e2

))
(16)

where Xmax = 5.5 µm, kim = 3.361 MN, m−1 is the impact stiffness, δ̇− = 8 mm s−1

is the impact velocity and e = 0.7 is the coefficient of restitution. See [25] for a
detailed analysis. Due to the special characteristics of the impact force [29,30], the
numerical optimization problem (2), in which the second-order ODE is replaced by

mẍ(t) = −
(
K (t) − Γ 2

C

)
x(t) − bẋ(t) − V (t)Γ + mF(t) − Fim, is too challenging.

Therefore, in this case, we consider the problem (2) affiliated with the condition
|x(t)|
Xmax

≤ 1 instead.Other parameters for acceleration sweep and frequency sweep forces
are the same as in Sect. 4.1.

Notice that the behavior of optimal controls under displacement-constrained opera-
tion has not been theoretically investigated in this work, while numerical optimizations
are provided as additional case studies.
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4.2.1 Acceleration Sweep

Figure 7 illustrates the numerical solution of optimal extracted power which is about
2.5 times higher compared to the result achieved from simulation.

4.2.2 Frequency Sweep

The optimal value of the harvested power is solved numerically and presented in
Fig. 8. However, the improvement of output power is not much when t is in the
range of [1.25, 2] s. This can be explained by the difference between the behavior
of the impact force in the lumped-model simulation and the mathematical condition∣∣x(t)∣∣ ≤ Xmax used for problem (2). Micro-electro-mechanical systems (MEMS)
energy harvesters exploiting impacts through alternative configurations were reported
in [31–34], with both modeling and experimental validations. These works exhibit
the bandwidth enhancement in up-frequency sweep, i.e., going from low toward high
frequencies. This phenomenon cannot be performed without a Hertzian contact model
or piecewise-linear restoring force, as in problem (2). Figure 9 shows the comparison
of proof mass displacement as evidence for the mentioned assertion.

In summary, this work indicated the optimal behavior of the two control subjects,
load and stiffness, in order tomaximize the extracted power of the vibration energy har-
vesters under unconstrained displacement. The numerical optimization results show
significant enhancements in transducer performances with different input forces and
operating conditions. This is clearly an encouragement for future research on opti-
mization on the whole time horizon. Owing to the bang–bang property, the resistive
load and open-circuit stiffness now only need to be switched between upper and lower
bounds which is of convenience for designing in practice, instead of being adjusted to
achieve each optimal value when the input driving force changes as analysis of pre-
vious works from other authors has shown. It is worth noting that the optimal output
power here is only a local value depending on the setting of parameterized stiffness

Fig. 7 Numerical optimization results in comparison with simulation for the amplitude sweep of external
acceleration, under displacement-constrained operation
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and electrical time constant bounds, see Fig. 10 for instance. The magnitude of these
ranges can be appropriately chosen so that the global optimal value is achieved. An
analysis of the optimal behavior of the load and stiffness along with limitation of the
mathematical model under displacement-constrained operation is also a promising
problem which needs to be addressed.

Last but not least, there is work done in changing the time-varying stiffness at fixed
displacement, which is given by PK = 1

2 x
2dK . Considering the net power harvested

by the transducers, one would expect to reformulate the integrand of the objective
function in (2), i.e., instead of V 2

R it should be
( V 2

R − PK
)
. This is an open issue for

further investigations.

Fig. 8 Numerical optimization and simulation results for the frequency-sweep excitation, with restriction
of displacement

Fig. 9 Comparison of the proof mass displacement in two cases: (i) numerical optimization and (ii) simu-
lation, for the frequency-sweep sinusoidal input
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Fig. 10 Comparison of the optimal output power with different ranges of the parameterized stiffness and
the electrical time constant

5 Conclusions

This work investigated the optimal behavior of the load and stiffness to maximize
the extracted power of vibration energy harvesters under unconstrained displacement
operation. Significant enhancements in transducer performances are observed from
the numerical optimization results. In order to obtain the optimal output power, due
to the bang–bang property, the resistive load and open-circuit stiffness are switched
only between their upper and lower bounds, which is of convenience for designing the
harvesting system in practice.
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