Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.25673/117186
Titel: | A study on the effects of calreticulin del52 mutation on neutrophil adhesion : Results from CALRdel52 knock-in mice and characterization of a novel CALRdel52 Catchup mouse model |
Autor(en): | Charakopoulos, Emmanouil |
Gutachter: | Simeoni, Luca Radsak, Markus Philipp |
Körperschaft: | Otto-von-Guericke-Universität Magdeburg |
Erscheinungsdatum: | 2023 |
Art: | Dissertation |
Tag der Verteidigung: | 2024 |
Sprache: | Englisch |
Herausgeber: | Otto-von-Guericke-Universität Magdeburg |
URN: | urn:nbn:de:gbv:ma9:1-1981185920-1191450 |
Schlagwörter: | Myeloproliferatives Syndrom Neutrophiler Granulozyt Zelladhäsion |
Zusammenfassung: | In the pathophysiology of classical Philadelphia-negative myeloproliferative neoplasms (MPNs), JAK2- V617F represents the most prevalent underlying disease driver mutation followed by deletion mutations in the gene encoding the endoplasmatic reticulum chaperone calreticulin (CALR). Patients harboring CALRdel mutations are at a lower risk of thrombosis as opposed to JAK2-V617F mutation carriers, but this difference in thrombotic risk has yet not been clarified at the molecular level. Our research group has shown for the first time that a JAK2-V617F-mediated shift of neutrophil-bound integrins to the high- affinity conformation leads to increased thrombus formation by strengthening neutrophil adhesion to the endothelial adhesion molecule vascular cell adhesion molecule 1 and lymphocyte function- associated antigen 1. Contrary to JAK2-V617F, much remains unknown regarding the effect CALRdel on neutrophil biology. In this doctoral thesis, we employ a novel neutrophil-specific CALRdel Catchup model and a hematopoietic-specific VavCre CALRdel mouse model to evaluate the impact of CALRdel on neutrophil function. In both murine models, CALRdel was not associated with increased integrin- mediated adhesion. Interestingly, a decreased binding of CALR-mutated neutrophils to E-selectin under flow and partially under static conditions was observed. In addition, CALRdel-expressing neutrophils were not capable of inducing a chronic myeloproliferative phenotype as assessed by similar blood counts and spleen size of CALRdel/+ Catchup mice compared to their wild-type counterparts. As opposed to a recently described JAK2-V617F Catchup mouse model, CALRdel/+ Catchup mice did not exhibit elevated levels of key pro-inflammatory cytokines, which points towards a minor role of CALRdel- expressing granulocytes in chronic non-resolving inflammation of MPNs. Our findings indicate that JAK2- V617F and CALRdel differentially regulate neutrophil-related adhesion and inflammation in the pathogenesis of MPNs. |
URI: | https://opendata.uni-halle.de//handle/1981185920/119145 http://dx.doi.org/10.25673/117186 |
Open-Access: | Open-Access-Publikation |
Nutzungslizenz: | (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International |
Enthalten in den Sammlungen: | Medizinische Fakultät |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
Dissertation_Emmanouil_Charakopoulos.pdf | 7 MB | Adobe PDF | Öffnen/Anzeigen |