Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/116547
Titel: Evolution of publicly available large language models for complex decision-making in breast cancer care
Autor(en): Griewing, SebastianIn der Gemeinsamen Normdatei der DNB nachschlagen
Knitza, Johannes
Boekhoff, JelenaIn der Gemeinsamen Normdatei der DNB nachschlagen
Hillen, ChristophIn der Gemeinsamen Normdatei der DNB nachschlagen
Lechner, Fabian
Wagner, UweIn der Gemeinsamen Normdatei der DNB nachschlagen
Wallwiener, MarkusIn der Gemeinsamen Normdatei der DNB nachschlagen
Kuhn, Sebastian
Erscheinungsdatum: 2024
Art: Artikel
Sprache: Englisch
Zusammenfassung: Purpose: This study investigated the concordance of five different publicly available Large Language Models (LLM) with the recommendations of a multidisciplinary tumor board regarding treatment recommendations for complex breast cancer patient profiles. Methods: Five LLM, including three versions of ChatGPT (version 4 and 3.5, with data access until September 3021 and January 2022), Llama2, and Bard were prompted to produce treatment recommendations for 20 complex breast cancer patient profiles. LLM recommendations were compared to the recommendations of a multidisciplinary tumor board (gold standard), including surgical, endocrine and systemic treatment, radiotherapy, and genetic testing therapy options. Results: GPT4 demonstrated the highest concordance (70.6%) for invasive breast cancer patient profiles, followed by GPT3.5 September 2021 (58.8%), GPT3.5 January 2022 (41.2%), Llama2 (35.3%) and Bard (23.5%). Including precancerous lesions of ductal carcinoma in situ, the identical ranking was reached with lower overall concordance for each LLM (GPT4 60.0%, GPT3.5 September 2021 50.0%, GPT3.5 January 2022 35.0%, Llama2 30.0%, Bard 20.0%). GPT4 achieved full concordance (100%) for radiotherapy. Lowest alignment was reached in recommending genetic testing, demonstrating a varying concordance (55.0% for GPT3.5 January 2022, Llama2 and Bard up to 85.0% for GPT4). Conclusion: This early feasibility study is the first to compare different LLM in breast cancer care with regard to changes in accuracy over time, i.e., with access to more data or through technological upgrades. Methodological advancement, i.e., the optimization of prompting techniques, and technological development, i.e., enabling data input control and secure data processing, are necessary in the preparation of large-scale and multicenter studies to provide evidence on their safe and reliable clinical application. At present, safe and evidenced use of LLM in clinical breast cancer care is not yet feasible.
URI: https://opendata.uni-halle.de//handle/1981185920/118504
http://dx.doi.org/10.25673/116547
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: Archives of gynecology and obstetrics
Verlag: Springer
Verlagsort: Berlin
Band: 310
Originalveröffentlichung: 10.1007/s00404-024-07565-4
Seitenanfang: 537
Seitenende: 550
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s00404-024-07565-4.pdf958.82 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen