Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/115650
Titel: Adaptive Clustering for Distribution Parameter Estimation in Technical Diagnostics
Autor(en): Shcherbakova, Galina
Antoshchuk, Svetlana
Koshutina, Daria
Sakhno, Kiril
Körperschaft: Hochschule Anhalt
Erscheinungsdatum: 2024
Sprache: Englisch
Schlagwörter: Informationstechnik
Datenverarbeitung
Zusammenfassung: A novel approach has been introduced to estimate the parameters of exponential and DN distributions during the rejection testing of electronic devices, accompanied by a detailed procedure for its implementation. This innovative method enhances noise immunity and minimizes the error associated with the rejection process through the application of a clustering technique involving wavelet transform. The effectiveness of the method has been verified using resistors, employing criteria such as noise level and stability. The substantial improvement in noise immunity and the reduction in rejection procedure errors are achieved by incorporating an adaptive clustering method coupled with wavelet transform. Notably, in clustering with a signal-to-noise ratio by amplitude of 1.17, the relative error in determining the minimum of the test function was reduced to 8.32%. These promising outcomes substantiate the recommendation of the developed method for the automated selection of resistors, particularly those designated for long-term operational equipment with critical applications. The presented method thus contributes significantly to enhancing the reliability and accuracy of electronic device testing and selection processes.
URI: https://opendata.uni-halle.de//handle/1981185920/117605
http://dx.doi.org/10.25673/115650
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International(CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
Enthalten in den Sammlungen:International Conference on Applied Innovations in IT (ICAIIT)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
2_8_ICAIIT_2024_Part_2_paper_6.pdf1.25 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen