Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/115649
Titel: Bert Embedding and Scoring for Scientific Automatic Essay Grading
Autor(en): Abdulkarem, Abeer
Krivtsun, Anastasia
Körperschaft: Hochschule Anhalt
Erscheinungsdatum: 2024
Sprache: Englisch
Schlagwörter: Informationstechnik
Datenverarbeitung
Zusammenfassung: The educational landscape is experiencing a surging demand for Automated Essay Grading (AEG), prompting the need for innovative solutions. This paper introduces a cutting-edge methodology that harnesses the power of Bidirectional Encoder Representation from Transformers (BERT) to embed and score essays in the scientific AEG domain. Tackling challenges such as Out-of-Vocabulary (OOV), BERT's contextual embedding proves instrumental. The study meticulously evaluates a hybrid architecture on a prototype incorporating non-English essay answers, establishing a benchmark against state-of-the-art studies. Beyond the expeditious grading of essays, particularly in scientific realms, this paper makes a substantial contribution to the ever-evolving field of educational technology. The AEG task revolves around the automation of essay response grading, where input data encompasses essay answers, and output data comprises assigned scores. The adopted mathematical model seamlessly integrates BERT for contextual embedding and subsequent scoring. The evaluation uncovers compelling results, underscoring the effectiveness of the proposed BERTbased model. The model's architecture, characterized by bidirectional layers and a dense output, encompasses a notable 2,243,401 parameters. Significantly, the Kappa Score achieved by the model impressively stands at 0.9725, highlighting its superiority over existing methodologies.
URI: https://opendata.uni-halle.de//handle/1981185920/117604
http://dx.doi.org/10.25673/115649
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International(CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
Enthalten in den Sammlungen:International Conference on Applied Innovations in IT (ICAIIT)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
2_7_ICAIIT_2024_Part_2_paper_7.pdf1.64 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen