Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/115551
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDohnal, Tomáš-
dc.contributor.authorIonescu-Tira, Mathias-
dc.contributor.authorWaurick, Marcus-
dc.date.accessioned2024-04-04T07:09:03Z-
dc.date.available2024-04-04T07:09:03Z-
dc.date.issued2024-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/117505-
dc.identifier.urihttp://dx.doi.org/10.25673/115551-
dc.description.abstractIn this paper we consider an abstract Cauchy problem for a Maxwell system modeling electromagnetic fields in the presence of an interface between optical media. The electric polarization is in general time-delayed and nonlinear, turning the macroscopic Maxwell equations into a system of nonlinear integro-differential equations. Within the framework of evolutionary equations, we obtain well-posedness in function spaces exponentially weighted in time and of different spatial regularity and formulate various conditions on the material functions, leading to exponential stability on a bounded domain.eng
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc510-
dc.titleWell-posedness and exponential stability of nonlinear Maxwell equations for dispersive materials with interfaceeng
dc.typeArticle-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleJournal of differential equations-
local.bibliographicCitation.volume383-
local.bibliographicCitation.pagestart24-
local.bibliographicCitation.pageend77-
local.bibliographicCitation.publishernameElsevier-
local.bibliographicCitation.publisherplaceOrlando, Fla.-
local.bibliographicCitation.doi10.1016/j.jde.2023.11.005-
local.openaccesstrue-
dc.identifier.ppn1885010451-
cbs.publication.displayform2024-
local.bibliographicCitation.year2024-
cbs.sru.importDate2024-04-04T07:08:42Z-
local.bibliographicCitationEnthalten in Journal of differential equations - Orlando, Fla. : Elsevier, 1965-
local.accessrights.dnbfree-
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
1-s2.0-S0022039623007179-main.pdf638.96 kBAdobe PDFThumbnail
View/Open