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Abstract

In this paper we consider an abstract Cauchy problem for a Maxwell system modeling electromag-
netic fields in the presence of an interface between optical media. The electric polarization is in gen-
eral time-delayed and nonlinear, turning the macroscopic Maxwell equations into a system of nonlinear 
integro-differential equations. Within the framework of evolutionary equations, we obtain well-posedness 
in function spaces exponentially weighted in time and of different spatial regularity and formulate various 
conditions on the material functions, leading to exponential stability on a bounded domain.
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1. Introduction

The macroscopic Maxwell equations governing electromagnetic fields E = E(t, x), H =
H(t, x) (t ∈R, x ∈� ⊆ R3) in matter are given by
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Fig. 1. Schematic depiction of the electric field of a traveling surface wave induced by charge oscillations at an interface 
� between two media �1 and �2.

∂tD − curlH = −J divD = ρ

∂tB + curlE = 0 divB = 0,
(1.1)

where J and ρ are the current and charge densities. The auxiliary fields (the material response) 
D, B are induced by E, H through the constitutive relations

D(E)= ε0E + P(E), B(H)= μH,

with a real constant ε0 > 0 and a symmetric matrix-valued function μ : � → R3×3. In reality, 
most material response is time-delayed, but the delay is often short enough to be modeled by 
instantaneous coefficients. If the material includes metals (e.g. in plasmonics), the memory effect 
(and the implied dispersion, i.e., frequency dependence of the material functions in frequency 
domain) is significant enough to warrant a detailed discussion, see [13]. Materials with memory 
also occur in nonlinear optics; usually (see [4]), an analytic expansion

P(E)= P (1)(E)+ P (2)(E)+ P (3)(E)+ · · ·

is assumed, where each P (n) is given by the time-delayed action of a tensor with rank (n + 1). 
We thus consider throughout variants of the model

P(E)(t)=
∫
R

· · ·
∫
R

χ(t − s1, . . . , t − sk) q(E(s1), . . . ,E(sk))ds1 · · ·dsk, (1.2)

with k ∈ N , where the kernel χ is causal in the sense that χ(s1, . . . , sk) = 0 whenever sj < 0
for some j ∈ {1, . . . , k}. Candidates for the vector function q are subjected to various conditions 
involving Lipschitz-continuity. Due to the convolution in (1.2) the dielectric constant, obtained 
from the Fourier transform (in time) of χ , is frequency dependent. In other words, the material 
is dispersive. In the linear case, i.e., k = 1 and q(E) = E, a standard model of χ is the Drude–
Lorentz model, see Appendix A.

Our aim is to study Maxwell’s equations in nonlinear optics for the interface problem depicted 
in Fig. 1, where � =�1 �� ��2 (� denotes disjoint union) consists of two domains �1 and �2, 
each with their own material response, separated by the interface �. In this case, the two systems 
resulting from (1.1) (on �i respectively) have to be supplemented by transmission conditions: If 
� is a 2-dimensional C1-manifold with a normal vector field n, these are given by (see [7])

[n×E]� = [n×H ]� = 0, [n ·D]� = [n ·B]� = 0 (1.3)
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and are due to the absence of surface charges and currents. Here [f ]� := (f1 − f2)|� denotes 
the jump of f across � (in the sense of traces), where fi = f |�i

. Condition (1.3) is equivalent to 
the continuity of the tangential components of E, H and transversal components of D, B .

A possible application of this interface setting lies in the modeling of surface waves such as 
surface plasmon polaritons (SPPs). These are evanescent electromagnetic fields resulting from 
charge excitation (achieved through coupling mechanisms) at an interface; see also Fig. 1. SPPs 
exist at metal-dielectric interfaces: in the linear case, one can obtain the existence of traveling
surface waves which satisfy a highly nonlinear dispersion relation due to frequency-dependent 
material response (see [21]). In addition, as metals are intrinsically lossy, SPPs experience expo-
nentially fast damping in time. In the theory this is reflected by the so-called exponential stability.

An important nonlinear effect at interfaces is surface second-harmonic generation, which orig-
inates from quadratic nonlinearities, see [22]. In fact, the quadratic nonlinearity is typically of 
leading order at interfaces where the inversion symmetry of the material is broken. Analytical 
and numerical studies of this effect have been performed, for instance, in [2,1]. Our results cover 
a wide class of nonlinearities, including the quadratic one.

For nonlinear Maxwell systems with interface, a local well-posedness theory is available for 
materials without memory, see [23] and the references therein. An application of the latter to 
surface waves can be found in [9]. The Maxwell problem with memory can be reformulated 
as an instantaneous system if the susceptibilities satisfy certain assumptions, see [25]. Up to 
our knowledge the only rigorous well-posedness analysis of nonlinear Maxwell equations with 
memory in the literature is the recent [6]. Here a semigroup approach is used and the results are 
limited to the local well-posedness on bounded domains. Our well-posedness results are in some 
cases global and include exponential stability.

There are several aims of this article. First, we provide a well-posedness theory (global in 
time) for Maxwell systems with interface and with a nonlinear material response given by nonlo-
cal models. The Maxwell system is formulated within the framework of evolutionary equations 
in the sense of Picard [15,17] (we also refer to [24] as a general reference). As this theory works 
in Bochner spaces in space-time, memory effects can be treated more naturally (see also [26] for 
similar nonlocal models in SPDEs).

Second, the formulation in spaces of higher spatial regularity allows for a wider class of 
nonlinearities and complements previous work on spatial regularity for evolutionary equations, 
see [19] and also [30].

Third, conditions for exponential stability of linear and nonlinear systems are provided; this 
is based on work in [27,28].

Finally, treating the paradigmatic Maxwell case may open up similar strategies for general 
evolutionary equations.

This article is structured as follows. Section 2 is concerned with the well-posedness of the 
Maxwell system in the functional analytic framework of evolutionary equations. Since here we 
work exclusively with (weighted) L2-spaces, no regularity of the interface or the boundary is 
needed. Subsection 2.5 deals with higher regularity in space, which requires some regularity of 
the interface and the boundary as well as the boundedness of � (whereas the time regularity is 
covered by the general theory and is not Maxwell-specific).

In Section 3 we examine exponential stability for the electric and magnetic field. The result 
for the linear second-order formulation (wave equation for the electric field) is Theorem 3.10. 
The proof uses the theory in [28] and the Picard–Weber–Weck selection theorem (B.1) as a 
26
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key ingredient. The latter restricts � to a bounded (weak Lipschitz) domain. Imposing suitable 
Lipschitz-continuity on the nonlinearity, a corresponding result is obtained for the nonlinear 
system by a fixed-point argument.

Using similar methods as in Theorem 3.10, we establish exponential stability for the full 
Maxwell system, for materials of a different class, in Theorem 3.15 for fields in L2(�)3, and 
in Theorem 3.17 for fields in H 2(�1)

3 ⊕ H 2(�2)
3. Theorem 3.17 allows for a wider class of 

nonlinearities, which are considered in Theorem 3.18.
The theory is accompanied by several examples. An overview of these applications is found 

in Appendix A.3.

2. The Maxwell system as an evolutionary equation

2.1. Maxwell operator and boundary conditions

We introduce the functional analytic setup in which we treat the Maxwell system (1.1) to-
gether with the transmission conditions. Let again � =�1 � � ��2 and set

H := L2(�)3.

We denote by curl0 the closure of the operator

C∞
c (�)3 � ϕ =

⎛⎝ϕ1
ϕ2
ϕ3

⎞⎠ 	→ ∇ × ϕ =
⎛⎝∂2ϕ3 − ∂3ϕ2
∂3ϕ1 − ∂1ϕ3
∂1ϕ2 − ∂2ϕ1

⎞⎠ ∈ C∞
c (�)3

in H, with

dom(curl0)=H0(curl,�) := C∞
c (�)3

‖·‖H(curl)
,

where ‖ϕ‖H(curl) = (‖ϕ‖2
L2 + ‖∇ × ϕ‖2

L2

)1/2. We further set curl := curl∗0. It is then easy to 
derive

dom(curl)=H(curl,�) := {u ∈ H : curlu ∈ H}.

Consider the operator

A :=
(

0 − curl
curl0 0

)
.

Then, by construction (since curl∗ = (curl∗0)∗ = curl0),

A∗ =
(

0 − curl
curl0 0

)∗
=
(

0 curl∗0− curl∗ 0

)
=
(

0 curl
− curl0 0

)
= −A,

i.e., A : H0(curl, �) ×H(curl, �) ⊆ L2(�)6 → L2(�)6 is skew-selfadjoint.
27
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Remark 2.1. For the application of the well-posedness in Sections 2.3 and 2.4 the domains �1, 
�2 may be quite general; in particular no regularity of the boundary is needed, and �1, �2
may be unbounded (if � = R3, then curl = curl0). However, to deal with higher regularity and 
exponential stability in Sections 2.5 and 3 they need to be bounded with more regularity of the 
boundary.

The above choice of

dom(A)=H0(curl,�)×H(curl,�)

and the skew-selfadjointness of A encode the interface conditions and the boundary condition 
of a perfect conductor, if the boundaries of �1, �2 are sufficiently regular: Assume that �, �1, 
�2 have Lipschitz boundaries and denote their outward normal fields by n. Let D ⊆ dom(A) be 
a subset consisting of functions that are smooth in �1 and �2 and fix (uE, uH ) ∈ D . Using the 
divergence theorem on �1 and �2 separately, we have for all vE ∈ C∞

c (�), vH ∈ C∞(�)

∫
�

(
curl0 uE · vH − uE · curlvH

)=
∫
�1

div(uE × vH )+
∫
�2

div(uE × vH )

=
∫

∂�1

(uE × vH ) · n+
∫

∂�2

(uE × vH ) · n

=
∫
�

[
(uE × vH ) · n]

�
+
∫
∂�

(uE × vH ) · n

=
∫
�

[
n× uE

]
�

· vH +
∫
∂�

(n× uE) · vH ,

and similarly,∫
�

(
curluH · vE − uH · curl0 vE

)=
∫
�

[
n× uH

]
�

· vE +
∫
∂�

(n× uH ) · vE.

=
∫
�

[
n× uH

]
�

· vE.

By skew-selfadjointness of A, the left-hand sides must vanish for arbitrary vE, vH . Therefore,

[
n× uE

]
�

= [
n× uH

]
�

= 0 and (n× uE)|∂� = 0. (2.1)

The latter identity is the boundary condition of a perfect conductor. Using the traces in H(curl, �)
and H0(curl, �), equations (2.1) can be shown to hold for uE ∈ H0(curl, �), uH ∈ H(curl, �)
in the sense of traces, see [11,3]. In absence of this regularity of ∂� and �, conditions (2.1) are 
interpreted in a generalized sense.
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We consider throughout a Cauchy problem for the Maxwell system (1.1), formulated as an 
evolutionary problem in (positive) time:⎧⎪⎨⎪⎩∂t

(
D(E)

B(H)

)
+
(

0 − curl
curl0 0

)(
E

H

)
=
(−J

0

)
, t > 0

(E(t),H(t))= (E0(t),H0(t)), t ≤ 0

⎫⎪⎬⎪⎭ (2.2)

in L2(�)6, where

(E0,H0) : (−∞,0] → L2(�)6, t 	→ (E0(t),H0(t))

is a given history (this is necessary since the material function (D, B) is in general dependent on 
past values of its argument). The solution should meet the condition (E(t), H(t)) ∈ dom(A) for 
all t , in order for the jump conditions of E, H to be fulfilled.

For the divergence equations for D, B one finds that they are largely redundant, in the sense 
that they follow from (2.2) and suitable initial values. Indeed (cf. [23]), applying div to the first 
line in (2.2) and integrating, it follows that divD(t) = 	(t) holds for t ≥ 0 if and only if 	 and J
are related by

	(t)= 	(0)−
t∫

0

divJ (s)ds .

Similarly, it follows from second line in (2.2) that divB is constant for all t > 0, so if divB(0) =
0, then divB(t) = 0 holds for all t > 0.

Regarding the jump conditions

[n ·D]� = [n ·B]� = 0, (2.3)

it suffices that they are fulfilled at time t = 0; then (2.3) follows for all t > 0 by taking derivatives 
in time and using the structure of the remaining equations (see again [23]).

More generally, the jump conditions (2.3) are a property of the domain of both the operators 
div : H(div, �) ⊆ L2(�)3 → L2(�) and div0 : H0(div, �) ⊆ L2(�)3 → L2(�), and can thus be 
interpreted as a regularity condition, see Sections 2.4, 2.5. Here div = − grad∗

0, div0 = − grad∗
are defined similarly to curl, curl0 in terms of the usual weak gradient grad : H 1(�) ⊆ L2(�) →
L2(�)3 and the weak gradient with zero boundary condition, grad0 : H 1

0 (�) ⊆ L2(�) →
L2(�)3.

We have

H(div,�)= {u ∈ L2(�)3 : divu ∈ L2(�)}

and H0(div, �) is the closure of C∞
c (�)3 with respect to the norm u 	→ (‖u‖2

L2 + ‖∇ · u‖2
L2)

1/2.

Remark 2.2. The interface setting will play no role in the solution theory established in the next 
sections, as the transmission conditions are naturally embedded into the domain dom(A), and is 
thus independent of any inhomogeneities in the material. Only in the context of higher regularity 
29
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in space (Section 2.5, and Section 3.2.1 for exponential stability in those spaces) will we need to 
take the regularity of the interface into account.

2.2. Linear evolutionary equations

In the following, we provide a short overview of the theory of evolutionary equations. For 
details, see [24]. We will first consider a purely linear material function (for example taking 
k = 1 in (1.2) and q(u) = u, see Example 2.9 below). In this case, the linear Maxwell system fits 
into the category of abstract evolutionary equations of the form(

∂tM(∂t )+A
)
u= g (2.4)

with given data g, understood as an operator equation in the weighted Hilbert space

L2
	(R,X) := {u ∈ L2

loc(R,X) : exp(−	 ·)u ∈ L2(R,X)}
with the inner product

〈u,v〉	,0 :=
∫
R

〈u(t), v(t)〉X e−2	t dt

and norm ‖·‖	,0 = √〈·, ·〉	,0, for some 	 ∈ R. Here X is a Hilbert space and A : dom(A) ⊆
X →X a densely defined and closed operator, extended to a subset of L2

	(R, X) via (Au)(t) :=
A(u(t)). The time derivative ∂t : dom(∂t ) ⊆ L2(R, X) → L2(R, X) is understood in the weak 
sense and is a densely defined and closed operator, where

dom(∂t )=H 1
	 (R,X) := {u ∈ L2

	(R,X) : u′ ∈ L2(R,X)}.
In most cases M(∂t ) will denote a convolution operator, but more generally it is a linear material 
law:

Definition 2.3. A linear material law is an analytic mapping M : dom(M) ⊆ C → B(X) into the 
space B(X) of bounded linear operators on X (with norm denoted by ‖·‖), which is uniformly 
bounded on a right half-plane, i.e.,

∃	0 ∈R : sup
Re z>	0

‖M(z)‖<∞.

The operator M(∂t ) is defined by the composition

M(∂t )= L∗
	M(i · + 	)L	,

with M(i · + 	) defined by (M(i · + 	)ϕ)(t) = M(it + 	)ϕ(t), and where L	 : L2
	(R, X) →

L2(R, X) is the unitary extension of the Fourier–Laplace transform

(L	ϕ)(t) := 1√
2π

∫
ϕ(s) e−(it+	)s ds .
R
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The solution theory for (2.4) is established by Theorem 2.5 and is closely tied to the concept 
of causality.

Definition 2.4. For a ∈ R we denote by θ+
a : L2

	(R, X) → L2
	(R, X) the multiplication operator 

defined by

θ+
a u(t)= 1(a,∞)(t)u(t)=

{
u(t), t > a

0, t ≤ a.

A mapping f on L2
	(R, X) is called (forward) causal, if for all a ∈R the implication

(1 − θ+
a )(u− v)= 0 =⇒ (1 − θ+

a )(f (u)− f (v))= 0

holds, i.e., if u, v agree on (−∞, a], then so do f (u), f (v).

By a consequence of the Paley–Wiener theorem ([24, Theorem 8.1.2]), if M is a linear ma-
terial law, then M(∂t ) is a causal operator on L2

	(R, X) for 	 > 	0. It is a key observation 
that ∂t is boundedly invertible for 	 �= 0, and causally invertible for 	 > 0. In the latter case 
∂−1
t : L2

	(R, X) → L2
	(R, X) is given by

(∂−1
t u)(t)=

t∫
−∞

u(s)ds (2.5)

and satisfies ‖∂−1
t ‖ ≤ 1/	 (see [24, Sec. 3.2]). We use the symbol ∂−1

t exclusively to denote the 
causal map given by (2.5).

Theorem 2.5 (Picard’s Theorem, see e.g. [24, Theorem 6.2.1]). Let A : dom(A) ⊆ X → X be 
skew-selfadjoint and M a linear material law, for which zM(z) is strictly accretive on a half-
plane CRe>	0 with 	0 ∈R, in the sense that

∃c > 0 ∀z ∈CRe>	0 : Re zM(z)≥ c (2.6)

(i.e., Re〈zM(z)x, x〉 ≥ c‖x‖2
X for all x ∈ X). Then for all 	 > 	0 the operator ∂tM(∂t )+A is 

closable and

S	 := (∂tM(∂t )+A)
−1 : L2

	(R,X)→ L2
	(R,X)

is well-defined and bounded, with ‖S	‖L2
	→L2

	
≤ 1/c. Moreover, S	 is causal and for all g ∈

L2
	(R, X) the following implications hold:

(i) If g ∈H 1
	 (R, X), then S	g ∈H 1

	 (R, X) ∩ dom(A).

(ii) If g ∈ L2(R, X) ∩L2 ′(R, X), then S	g = S	′g ∈ L2(R, X) ∩L2 ′(R, X) for all 	, 	′ > 	0.
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Remark 2.6. If M, A satisfy the assumptions of Theorem 2.5, the solution u of (2.4) is explicitly 
given using the spectral representation of the time-derivative:

u= (∂tM(∂t )+A)
−1
g = L−1

	

(
(i · + 	)M(i · + 	)+A

)−1L	g

for g ∈ L2
	(R, X), 	 > 	0. As such, Theorem 2.5 provides sufficient conditions for the operator

(·M(·)+A)−1 : CRe>	0 ∩ dom(M)→ B(X), z 	→ (zM(z)+A)−1

to have a bounded and analytic extension on CRe>	0 . In this case, we say that the problem (2.4) is 
well-posed in the range of spaces L2

	(R, X), 	 > 	0, or simply well-posed, implicitly presuming 
the existence of such 	0 ∈R.

2.3. Well-posedness of the nonlinear Maxwell system

Nonlinear, (uniformly) Lipschitz-continuous perturbations of linear equations can be treated 
by a Banach fixed-point argument; see [26] for a similar argument. Precisely, inspired by [24, 
Section 4.2], we consider the following class of nonlinearities.

Definition 2.7. A function f : dom(f ) ⊆ ⋂
	≥	0

L2
	(R, X) →

⋂
	≥	0

L2
	(R, X) is called uni-

formly Lipschitz-continuous, if dom(f ) is dense in L2
	(R, X) and f extends to a Lipschitz-

continuous map f	 : L2
	(R, X) → L2

	(R, X) such that f	 = f	′ on L2
	(R, X) ∩L2

	′(R, X) for all 

	, 	′ > 	0. In this case we simply write f : L2
	(R, X) → L2

	(R, X) for 	 > 	0.

Proposition 2.8. Let 	0, d ∈ R>0, and let M be a linear material law satisfying

∀z ∈CRe>	0 : Re zM(z)≥ Re z

d
. (2.7)

Furthermore, let f : L2
	(R, X) → L2

	(R, X) be causal and uniformly Lipschitz-continuous for 
all 	 > 	0 with

lim sup
	→+∞

d

	
‖f ‖Lip(L2

	→L2
	)
< 1.

Then there exists 	1 ≥ 	0 such that for all 	 > 	1 the problem (∂tM(∂t ) +A)u = f (u) possesses 
a unique solution u ∈L2

	(R, X), which is independent of 	.

Proof. Denote again S	 = (∂tM(∂t )+A)
−1

. Due to (2.7) the material law M satisfies a stronger 
variant of (2.6), namely Re zM(z) ≥ 	/d for Re z > 	 > 	0, hence S	 is bounded in L2

	(R, X)
for all 	 > 	0, with ‖S	‖ ≤ d/	. By Theorem 2.5 and Lipschitz continuity of f we can estimate

‖S	f (u)− S	f (v)‖	,0 = ‖(∂tM(∂t )+A)
−1
(f (u)− f (v))‖	,0

≤ d ‖f ‖Lip‖u− v‖	,0.
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Hence, S	f (·) : L2
	(R, X) → L2

	(R, X) becomes a contraction for large 	. By Theorem 2.5 (ii) 
and the assumption on f , the unique fixed point is independent of 	. �

From now on we apply this result to the general nonlinear Maxwell system (2.2) setting X =
H×H. To this end, we isolate the linear part of the polarization and take

D(E)= ε(∂t )E + Pnl(E),

where ε(·) is a linear material law (the linear permittivity) and the resulting nonlinear system 
takes the form(

∂t

(
ε(∂t ) 0

0 μ

)
+
(

0 − curl
curl0 0

))(
E

H

)
=
(−∂tPnl(E)

0

)
+
(
Φ

Ψ

)
. (2.8)

The assumptions of Proposition 2.8 are satisfied if:

• ε satisfies Re zε(z) ≥ cε Re z for Re z > 	0 and some cε > 0.
• ∂tPnl : L2

	(R, H) → L2
	(R, H) is uniformly Lipschitz continuous for 	 > 	0.

• The permeability μ ∈ B(H) is a bounded, selfadjoint operator which is uniformly positive 
definite, i.e., μ(x) ≥ cμ > 0 for all x ∈�.

• Φ, Ψ ∈ L2
	(R, H) (	 > 	0) are arbitrary inhomogeneities (used below to encode the history 

of the system, see (2.28)).

Thus, the linearized Maxwell system(
∂t

(
ε(∂t ) 0

0 μ

)
+
(

0 − curl
curl0 0

))(
E

H

)
=
(
Φ

Ψ

)
(2.9)

is well-posed by Theorem 2.5, since Re z
(
ε(z) 0

0 μ

)
≥ min{cε, cμ} for all 	 > max{1, 	0}.

Example 2.9. In most cases we will consider ε(∂t )E = ε0E + χ ∗ E and μH = μ0H , where 
ε0, μ0 > 0 are the vacuum permittivity and vacuum permeability, and χ∗ denotes the time con-
volution with the linear electric susceptibility tensor χ : R → B(H), with suppχ ⊆ [0, ∞) due 
to causality, such that

χ ∗E =
∞∫

0

χ(· − s)E(s)ds .

The simplest case in an interface setting is given by

χ(t)= χ1(t)1�1 + χ2(t)1�2

with scalar-valued χ1, χ2 supported in [0, ∞) and 1�i
being the characteristic function on �i . 

Let
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χ̃ (ω)= 1√
2π

∫
R

χ(s)eiωs ds (2.10)

denote the frequency-dependent susceptibility. Since

(L	χ)(ξ)= 1√
2π

∫
R

χ(s)e−(	+iξ)s ds = χ̃ (i(	 + iξ)),

we have ε(z) = ε0 + χ̃(iz). If now χ1, χ2 ∈ L2
	χ
(R) for some 	χ ∈ R, then |χ̃(iz)| is bounded 

on CRe>	0 for all 	0 > 	χ , which follows from

|χ̃ (i(	+ iξ))|2 =
∣∣∣∫
R

χ(s)e−(	+iξ)s ds
∣∣∣2 ≤ ‖χ‖2

L2
	χ

∞∫
0

e−2(	−	χ )s ds ≤ ‖χ‖2
L2
	χ

∞∫
0

e−2(	0−	χ )s ds

for 	 ≥ 	0. Hence ε is a linear material law. The condition Re(zε(z)) ≥ cε Re z ≥ cε	0 above is 
satisfied for some 	0 > 0 if z 	→ |zχ̃(iz)| is bounded on CRe>	1 for some 	1 ∈ R (for example, 
this is the case for the Drude–Lorentz model in Appendix A). The extension to the case in which 
χ1(t), χ2(t) ∈ L∞(�)3×3 are matrix-valued is straightforward; here we impose the condition 
‖χ1(·)‖L∞ , ‖χ2(·)‖L∞ ∈ L2

	χ
(R).

For the nonlinear part we similarly assume that

Pnl(E)=
∫
R

κ(· − s) q(E(s))ds, (2.11)

with κ : R → B(H), suppκ ⊆ [0, ∞), and q : H → H Lipschitz-continuous. Since ∂tPnl(E) is 
the only term on the right-hand side of (2.8) depending on E and

∂tPnl(E)(t)= κ(0+)q(E(t))+
∞∫

0

κ ′(t − s)q(E(s))ds,

the needed Lipschitz-continuity in E is implied by conditions on κ and its derivative κ ′. These 
conditions are provided next.

Lemma 2.10. Let κ : [0, ∞) → B(H) be continuous and differentiable in (0, ∞) and denote by 
κ ′ : R → B(H) the zero extension of its derivative. Suppose ‖κ ′(·)‖ := ‖κ ′(·)‖B(H) is measur-
able, and let 	κ ∈ R be such that ‖κ ′(·)‖ ∈ L1

	κ
(R), i.e.,

Lκ :=
∫
R

∥∥κ ′(s)
∥∥ e−	κs ds <∞. (2.12)

Furthermore, assume that q is a Lipschitz-continuous map q : H → H. Then
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Z : L2
	(R,H)→ L2

	(R,H), Z(u)(t)=
∫
R

κ ′(t − s) q(u(s))ds

is Lipschitz continuous, uniformly in 	 ≥ 	κ , with ‖Z‖Lip ≤ Lκ‖q‖Lip.

Proof. (cf. [15]) We compute for u, v ∈ L2
	(R, H),

‖Z(u)−Z(v)‖2
	,0 ≤

∥∥∥∥∥∥
∫
R

‖κ ′(t − s)‖ |q(u(s))− q(v(s))|ds

∥∥∥∥∥∥
2

	,0

e−2	t dt

≤ ‖q‖2
Lip

∫
R

⎛⎝∫
R

‖κ ′(t − s)‖‖u(s)− v(s)‖H ds

⎞⎠2

e−2	t dt

(�)≤ ‖q‖2
LipLκ

∫
R

(∫
R

‖κ ′(t − s)‖‖u(s)− v(s)‖2
H e	κ (t−s) ds

)
e−2	t dt

= ‖q‖2
LipLκ

∫
R

∫
R

‖κ ′(t − s)‖e−	κ (t−s)·

· e−2(	−	κ )(t−s)︸ ︷︷ ︸
≤1 for t−s≥0

dt ‖u(s)− v(s)‖2
H e−2	s ds

≤ ‖q‖2
LipLκ

∫
R

‖κ ′(r)‖e−	κ r dr
∫
R

‖u(s)− v(s)‖2
H e−2	s ds

= ‖q‖2
LipL

2
κ ‖u− v‖2

	,0,

(2.13)

where (�) follows after writing ‖κ ′(t − s)‖ = ‖κ ′(t − s)‖ 1
2 + 1

2 e−	κ (t−s)( 1
2 − 1

2 ) and applying the 
Cauchy–Schwarz inequality. �

Lemma 2.10 yields the uniform Lipschitz-continuity of

E 	→ ∂tPnl(E)= κ(0+)q(E(·))+Z(E),

implying for 	 > max{	κ, 0} that the solution operator

Snl
	 :

(
E

H

)
	→
(
∂t

(
ε(∂t ) 0

0 μ

)
+
(

0 − curl
curl0 0

))−1((−∂tPnl(E)

0

)
+
(
Φ

Ψ

))

is causal and Lipschitz-continuous for any Φ, Ψ ∈ L2
	(R, H), with Lipschitz constant at most

‖Snl
	 ‖Lip ≤ c ‖q‖Lip(|κ(0+)| +Lκ), (2.14)
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where c is given by the condition (2.7) imposed on ε(·) and μ. Choosing 	 ≥ 	κ large enough, 
Snl
	 becomes a contraction on L2

	(R, H×H).

Example 2.11 (Saturable nonlinearity). Let k ∈ N≥2 and τ > 0 and consider q : H → H given 
by

q(u)(x)= |u(x)|k−1

1 + τ |u(x)|k−1 u(x)=: V (|u(x)|)u(x).

(For k = 3 this is a saturable version of the Kerr-type nonlinearity E 	→ |E|2E.) Since R3 �
ξ 	→ V (|ξ |)ξ is smooth and asymptotically linear, it is Lipschitz-continuous, hence q : H → H
is Lipschitz-continuous. Thus, Pnl defined as in (2.11) with κ as in Lemma 2.10, fulfills the 
necessary assumptions of the lemma.

2.3.1. Local well-posedness
Let X be a general Hilbert space. The uniform Lipschitz-continuity in the range of spaces 

L2
	(R, X) imposed on the nonlinearity may seem restrictive (in particular, nonlinearities growing 

at a superlinear rate are excluded as candidates for q). In fact, this condition can be replaced 
by Lipschitz continuity on closed subsets in L2

	(R, X), which eventually (for large 	) grow 
large enough to include given data. To illustrate this, we formulate the following refinement of 
Proposition 2.8.

Proposition 2.12. Let A : dom(A) ⊂ X → X be skew-selfadjoint and M a linear material law 
with Re zM(z) ≥ Re z/d for Re z > 	0. Let f : L2

	(R, X) → L2
	(R, X) be a causal nonlinear 

map satisfying f (0) = 0 and let c, α > 0 be such that for 	 > 	0

‖f (u)− f (v)‖	,0 ≤ c
(‖u‖	,0 + ‖v‖	,0

)α‖u− v‖	,0 (2.15)

for all u, v ∈ L2
	(R, X). Suppose g ∈ L2

	(R, X) is such that ‖g‖	,0 = o(	1+ 1
α ) as 	 → ∞. Then 

the equation (∂tM(∂t ) +A)u = f (u) + g admits a unique solution u ∈ L2
	(R, X) for large 	 >

	0.

Proof. Denote by S	 := (
∂tM(∂t )+A

)−1 : L2
	(R, X) → L2

	(R, X) the linear solution operator. 
Then, using ‖S	‖ ≤ d/	, the Lipschitz constant of S	(f (·) + g) on a closed ball Br := {u ∈
L2
	(R, H) : ‖u‖	,0 ≤ r} for r > 0 can be estimated by

L	,r := sup
u,v∈Br ,u �=v

‖S	f (u)− S	f (v)‖	,0
‖u− v‖	,0 ≤ cd

	
(2r)α

for 	 > 	0, thus L	,r < 1 if r < 1
2

( 	
cd

)1/α . In order to have S	(f (u) + g) ∈ Br for all u ∈ Br , we 
demand that

‖S	(f (u)+ g)‖	,0 ≤ d

	

(
c‖u‖α+1

	,0 + ‖g‖	,0
)≤ d

	
(crα+1 + ‖g‖	,0) !≤ r.
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Replacing r with 1
2

( 	
cd

)1/α in the last inequality leads to the condition

‖g‖	,0
c

!
<

1

2

	

cd

( 	

cd

) 1
α −

(1

2

( 	

cd

) 1
α
)α+1 = 1

2

( 	

cd

)1+ 1
α (

1 − 2−α
)
,

which is fulfilled by assumption on g for large 	 > 0. This establishes S	(f (·) + g) as a contrac-

tion on Br for some r < 1
2

( 	
cd

)1/α . �
Remark 2.13. The condition ‖g‖	,0 = o(	1+ 1

α ) as 	 → ∞ of Proposition 2.12 is satisfied if g ∈
L2
	(R, H) for some 	 ∈ R with suppg ∈ [0, ∞). This latter assumption, in fact ‖g‖	,0 = O(1), 

is justified in Section 2.4.

Consider now a quadratic nonlinearity of the form

f (u)(t)=
∫
R

∫
R

K(t − τ1, t − τ2)q(u(τ1), u(τ2))dτ1 dτ2, (2.16)

where K : R2 → B(X) is an operator-valued kernel with suppK ⊆ [0, ∞)2 (to ensure causality), 
and where q : X×X →X is a bounded bilinear map, i.e., ‖q(u, v)‖X ≤ Cq‖u‖X‖v‖X for some 
Cq > 0. In analogy to (2.12) we impose the following integrability conditions,

LK :=
∫∫

‖K(τ1, τ2)‖ e−	K(τ1+τ2) dτ1 dτ2 <∞

�K := sup
τ1,τ2∈R

∫
‖K(t − τ1, t − τ2)‖ e−	K(2t−τ1−τ2) dτ1 dτ2 <∞

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.17)

for some 	K ∈ R. Using the same strategy as in (2.13) we can show for all 	 ≥ 	K that f maps 
L2
	(R, X) into L2

2	(R, X); indeed,

∫
R

∥∥∥∥∫∫ K(t − τ1, t − τ2)q(u(τ1), v(τ2))dτ1 dτ2

∥∥∥∥2

X

e−4	t dt

≤ LKC
2
q

∫
R

(∫∫
‖K(t − τ1, t − τ2)‖e	K(2t−τ1−τ2)‖u(τ1)‖2

X‖v(τ2)‖2
X dτ1 dτ2

)
e−4	t dt

≤ LKC
2
q

∫∫ (∫
R

‖K(t − τ1, t − τ2)‖e−	K(2t−τ1−τ2) e−2(	−	K)(2t−τ1−τ2)︸ ︷︷ ︸
≤1 for τ1, τ2 ≤ t

dt

)
·

· ‖u(τ1)‖2
Xe

−2	τ1 dτ1‖v(τ2)‖2
Xe

−2	τ2 dτ2

≤ LK�KC
2
q‖u‖2

	,0‖v‖2
	,0.

This computation makes it clear, however, that the mapping property f : L2
	(R, X) → L2

	(R, X)
cannot be obtained in general for 	 > 0. (Yet if 	K < 0, then f leaves a subspace of L2(R, X), 
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	K ≤ 	 < 0, invariant; this fact is relevant in combination with the notion of exponential stability, 
see Section 3.)

Remark 2.14 (Nonlinearity with a cutoff in time). We now show how the fixed-point argument 
underlying Proposition 2.12 can still be applied to a modified version of the nonlinearity above 
to obtain a local well-posedness result for 	 ≥ 	K > 0. In detail, we modify the kernel K by 
applying a cutoff in the t-variable. Suppose again K : R2 → B(X) is causal map satisfying (2.17)
and that, in addition,

dK := ess sup
τ1,τ2≥0

‖K(τ1, τ2)‖ e−	K(τ1+τ2) <∞. (2.18)

For T > 0 we define KT : R3 → B(X) and fT : L2
	(R, X) → L2

	(R, X) by

KT (t, τ1, τ2) := 1(−∞,T ](t)K(τ1, τ2)

fT (u)(t) :=
∫
R

∫
R

KT (t, t − τ1, t − τ2)q(u(τ1), u(τ2))dτ1 dτ2,

and observe that ∫
R

∫
R

‖KT (t, τ1, τ2)‖ e−	K(τ1+τ2) dτ1 dτ2 ≤ LK

∫
R

‖KT (t, τ1, τ2)‖ e−	K(τ1+τ2)e2	t dt ≤
T∫

0

dKe
2	t dt ≤ T e2	T dK, if τ1, τ2 ≥ 0

for all 	, t, T > 0. Now modifying the estimate above we obtain for 	≥ 	K and u, v ∈ L2
	(R, X)

∫
R

∥∥∥∥∫∫ KT (t, t − τ1, t − τ2) q(u(τ1), v(τ2))dτ1 dτ2

∥∥∥∥2

X

e−2	t dt

≤ LKC
2
q

T∫
0

(∫∫
‖K(t − τ1, t − τ2)‖ e	K(2t−τ1−τ2)‖u(τ1)‖2

X‖v(τ2)‖2
X dτ1 dτ2

)
e−2	t dt

≤ LKC
2
q

∫∫ ( T∫
0

‖K(t − τ1, t − τ2)‖e−	K(2t−τ1−τ2) e2	K(2t−τ1−τ2)+2	(τ1+τ2−t)︸ ︷︷ ︸
≤e2	t for τ1, τ2 ≤ t

dt

)
·

· ‖u(τ1)‖2
Xe

−2	τ1 dτ1‖v(τ2)‖2
Xe

−2	τ2 dτ2

≤ T e2	T dKLKC
2
q‖u‖2

	,0‖v‖2
	,0.

Since by bilinearity of q we have
38



T. Dohnal, M. Ionescu-Tira and M. Waurick Journal of Differential Equations 383 (2024) 24–77
‖q(u(τ1), u(τ2))− q(v(τ1), v(τ2))‖X
≤ ‖q(u(τ1), u(τ2)− v(τ2))‖X + ‖q(u(τ1)− v(τ1), v(τ2))‖X
≤ Cq (‖u(τ1)‖X‖u(τ2)− v(τ2)‖X + ‖u(τ1)− v(τ1)‖X‖v(τ2)‖X) ,

(2.19)

the estimate above produces

‖fT (u)− fT (v)‖	,0 ≤ √
T e	T Cq

√
dKLK

(‖u‖	,0 + ‖v‖	,0
)‖u− v‖	,0. (2.20)

Hence, given 	 ≥ 	K , the parameters T , r > 0 can be chosen small enough so that u 	→
S	(fT (u) + g) becomes a contraction on a closed ball with radius r in L2

	(R, X), provided 
that the data g ∈ L2

	(R, X) is small enough.

Example 2.15. As an application to the Maxwell system, let Pnl = P (2), where P (2) is a fully 
nonlocal quadratic polarization given by

P (2)(E)(t) :=
∫
R

∫
R

κ(t − τ1, t − τ2) q(E(τ1),E(τ2))dτ1 dτ2 .

Here we assume that the spatial map q is defined via a tensor � = (�ijk)i,j,k∈{1,2,3} with �ijk ∈
L2(�3),

q(u, v)(x)=
∫
�

∫
�

�(x, y, y′)u(y)v(y′)dy dy′

:=
(∫
�

∫
�

∑
j,k∈{1,2,3}

�ijk(x, y, y
′)uj (y)vk(y′)dy dy′

)
i=1,2,3

,

and that κ ∈ C1(R2, R3×3) is a matrix-valued map with compact support in (0, ∞)2. By the 
Cauchy–Schwarz inequality we have the pointwise estimate∣∣∣∫

�

∫
�

�ijk(x, y, y
′)uj (y)vk(y′)dy dy′

∣∣∣≤ ‖�ijk(x, ·, ·)‖L2(�2)‖uj‖L2(�)‖vk‖L2(�),

from which we obtain ‖q(u, v)‖H ≤ Cq‖u‖H‖v‖H with an appropriate constant Cq . Hence, q is 
a bilinear, bounded map and satisfies (2.19) with X = L2(�)3. Furthermore, formally computing 
the derivative of P (2)(E) gives

∂tP
(2)(E)(t)=

t∫
−∞

κ(t − τ1,0) q(E(τ1),E(t))dτ1 +
t∫

−∞
κ(0, t − τ2) q(E(t),E(τ2))dτ2

+
t∫ t∫

(∂1 + ∂2)κ(t − τ1, t − τ2) q(E(τ1),E(τ2))dτ1 dτ2
−∞ −∞
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=
t∫

−∞

t∫
−∞

(∂1 + ∂2)κ(t − τ1, t − τ2) q(E(τ1),E(τ2))dτ1 dτ2

since κ(0, ·) = κ(·, 0) = 0, i.e., ∂tP (2) is again a fully nonlocal map of the form (2.16), where 
K := (∂1 + ∂2)κ is continuous with compact support in (0, ∞)2. As such, K satisfies (2.17) and 
(2.18) for arbitrary 	K ∈ R. Thus, the cutoff version of ∂tP (2) defined by

(∂tP
(2))T := 1(−∞,T ](∂tP (2))

satisfies (2.20).

The same principle applies to multilinear maps in general: Let n ∈ N≥2 and q : (H)n → H
be a bounded n-linear map. Let κ : Rn → Rn×n be supported in [0, ∞)n with κ(s1, . . . , sn) = 0
whenever sj = 0 for some j ∈ {1, . . . , n}. Defining P (n) as in (1.2) by

P (n)(E)(t)=
∫

· · ·
∫

κ(t − τ1, . . . , t − τn)q(E(τ1), . . . ,E(τn))dτ1 · · ·dτn,

we find that, if κ satisfies an integrability condition similar to (2.17), then (∂tP (n))T =
1(−∞,T ]∂tP (n), T > 0, satisfies

‖(∂tP (n))T (u)− (∂tP
(n))T (v)‖	,0 ≤ √

T e(n−1)	T C
(‖u‖	,0 + ‖v‖	,0

)n−1‖u− v‖	,0. (2.21)

Reasoning as above in (ii) we obtain the following result.

Proposition 2.16 (Well-posedness of the Maxwell system with fully nonlocal multilinear polar-
ization and a cutoff in time). Suppose the linear system (2.9) is well-posed in L2

	(R, H), 	 > 	0. 
Then, for each 	 > max{	0, 	K}, the nonlinear system(

∂t

(
ε(∂t ) 0

0 μ

)
+
(

0 curl
curl0 0

))(
E

H

)
=
(−(∂tP

(n))T (E)

0

)
+
(
Φ

Ψ

)
admits a unique solution (E, H) ∈L2

	(R, H)2 for small T > 0 and small data Φ, Ψ ∈ L2
	(R, H).

2.4. Initial values

In order to apply the well-posedness theory to system (2.2), it remains to discuss how the 
history of the electromagnetic field can be incorporated into the framework. First we mention the 
following result concerning regularity in time (see [18, Section 3.1] or [24, Section 6.3]). (We 
subsequently use the notation f � g or equivalently g � f to denote f ≤ Cg for some C > 0
independent of f, g.)

Proposition 2.17. Let (∂tM(∂t )+A)u = g be well-posed in the range of spaces L2
	(R, X) for 

	 > 	0 with 	0 ∈R. If g ∈H 1
	 (R, X), then u = (

∂tM(∂t )+A
)−1

g ∈H 1
	 (R, X), with continuous 

dependence on the data:
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‖u‖	,0 � ‖g‖	,0, ‖∂tu‖	,0 � ‖∂tg‖	,0.

In fact, ∂tu = (∂tM(∂t )+A)
−1
∂tg. Moreover,

u ∈ C	(R,X) := {f ∈ C(R,X) : sup
t∈R

‖f (t)‖X e−	t <∞}

by the Sobolev embedding theorem.

Consider a general Cauchy problem for the Maxwell equations,{
∂tM(U)(t)+AU(t)= 0, t > 0

U(t)= φ(t), t ≤ 0

}
(2.22)

for a given history φ : (−∞, 0] → L2(�)6. For simplicity of this model problem we have set 
J = 0 and assume

M(U)=M0U + G(U), with G(U)= χ ∗ q(U),

where M0 is selfadjoint and uniformly positive definite, χ is rapidly decaying, smooth, and 
suppχ ⊆ (0, ∞), and q : L2(�)6 → L2(�)6 is Lipschitz-continuous with q(0) = 0. We want 
to convert (2.22) into a nonlinear evolutionary equation in L2

	(R, L
2(�)6) (we note however 

that the derivation below is not strictly tied to the Maxwell system). To this end, suppose U ∈
C(R, L2(�)6) is a continuous solution of (2.22). Let θ+ := θ+

0 denote multiplication with the 
Heaviside step function, then the projection

u := θ+U

separates the “unknown” solution u with suppu ⊆ [0, ∞) from the given history φ, which we 
extend trivially to the whole line, thus φ = (1 − θ+)φ. With U = u + φ we also have q(U(t)) =
q(u(t)) + q(φ(t)) for all t ∈ R, and therefore in fact M(U)(t) = M(u)(t) + M(φ)(t). Inter-
preting now ∂t in the distributional sense, we use the formula

∂t (θ
+ϕ)= θ+∂tϕ + ϕ(0+)δ0

to extract from (2.22) an equation for u on the whole real line:

0 = θ+[∂tM(U)+AU
]

= ∂t (θ
+M(U))−M(U)(0+)δ0 +A θ+U

= ∂t (θ
+M(u))+ ∂t (θ

+M(φ))−M(φ)(0−)δ0 +Au

= ∂tM(u)+Au+ ∂t (θ
+G(φ))−M0φ(0

−)δ0 − G(φ)(0−)δ0

= ∂tM(u)+Au+ θ+∂tG(φ)+ G(φ)(0+)δ0 −M0φ(0
−)δ0 − G(φ)(0−)δ0

= ∂tM(u)+Au+ θ+∂tG(φ)−M0φ(0
−)δ0, (2.23)
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t

φ

u

ũ

supp θ+η

Fig. 2. Schematic for the conversion of the Cauchy problem to an evolutionary equation.

where we used G(φ)(0−) = G(φ)(0+). The δ0-term can be removed by smoothing the jump of u
at t = 0: Choose η ∈ C∞

c (R) with η(0) = 1, and set

φ+ := φ(0−)θ+η, ũ := u− φ+,

see Fig. 2. Then,

∂tM(u)= ∂tM(ũ+ φ+)= ∂t
(
M0ũ+M0φ

+ + G(ũ+ φ+)
)

= ∂t
(
M0ũ+ G(ũ+ φ+)

)+ θ+∂tM0φ
+ +M0φ

+(0+)δ0.

Thus, using that φ+(0+) = φ(0−), (2.23) becomes

0 = ∂tM(ũ+ φ+)+A ũ+Aφ+ + θ+∂tG(φ)−M0φ(0
−)δ0

= ∂t
(
M0ũ+ G(ũ+ φ+)

)+A ũ+ θ+∂tM0φ
+ + θ+∂tG(φ)+Aφ+.

Finally, the last identity can be written as

(
∂tM0 +A

)
ũ= −∂tG(ũ+ φ+)+ gφ (2.24)

where

gφ := −θ+[∂t(M0φ
+ + G(φ)

)+Aφ+].
Now (2.24) is a proper reformulation of (2.22) as an operator equation in L2

	(R, L
2(�)6). The 

well-posedness follows by Proposition 2.8 from the Lipschitz continuity of ũ 	→ ∂tG(ũ + φ+). 
Since φ+ = 0 on (−∞, 0], the causality of the solution operator and the fixed-point iteration 
implies ũ= 0 on (−∞, 0].

Remark 2.18. The initial value theory in [28] for linear systems uses η ≡ 1, however, the present 
choice η ∈ C∞

c (R) is more convenient since it also works in the context of exponential stability, 
i.e., if the system is well-posed for 	 = −ν < 0, we have ũ ∈ L2−ν(R, H) if and only if u ∈
L2 (R, H); see also [27, Section 4].
−ν
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Remark 2.19 (A posteriori justification). If gφ ∈ H 1
	 (R, L

2(�)6), then solutions of (2.24)
generate continuous solutions of (2.22). Indeed, in this case Proposition 2.17 justifies ũ ∈
H 1
	 (R, L

2(�)6), and since φ − φ+ is continuous, U = ũ+ (φ − φ+) ∈ C(R, L2(�)6). Assum-

ing the history φ is sufficiently regular, φ ∈ H 1
	 ((−∞, 0], L2(�)6) with φ(0−) ∈ dom(A), then 

gφ ∈ H 1
	 ((0, ∞), L2(�)6). In this case, since gφ = 0 on (−∞, 0], a necessary and sufficient 

condition for gφ ∈H 1
	 (R, L

2(�)6) is the continuity of gφ in t = 0, i.e.,

gφ(0
+)= [

∂t (M0φ
+ + G(φ))+Aφ

]
t=0 = 0. (2.25)

This, after a slight modification of φ+, can be interpreted as: φ must be a solution of the Maxwell 
system in t = 0. Indeed, under the assumption that φ is differentiable in t = 0, let

φ+ = φ(0−)θ+η+ (∂tφ)(0
−)θ+γ,

where η ∈ C∞
c (R), η(0) = 1, η′(0) = 0 is as before, and γ ∈ C∞

c (R) satisfies γ (0) = 0, γ ′(0) =
1. Then, for gφ defined as above, (2.25) becomes

gφ(0
+)= [

M0(∂tφ)(0
−)+ ∂tG(φ)(0−)+Aφ(0−)

]= ∂tM(φ)(0)+Aφ(0)= 0. (2.26)

Example 2.20. Let us formulate the above transformation U 	→ ũ in the original Maxwell vari-
ables E, H . Hence, consider

∂tD(E)− curlH = 0

∂tμH − curl0 E = 0

for t > 0, where D(E) = ε(∂t )E + Pnl(E) = ε0E + χ ∗ E + κ ∗ q(E). To simplify the no-
tation, we denote the zero extension of the history of the fields by E0, H0. Setting E+

0 :=
E0(0−)θ+η, H+

0 := H0(0−)θ+η (η ∈ C∞
c (R) as before), we see that the resulting evolution-

ary system takes the form of (2.8),(
∂t

(
ε(∂t ) 0

0 μ

)
+
(

0 − curl
curl0 0

))(
Ẽ

H̃

)
=
(−∂t P̃nl(Ẽ)

0

)
+
(
Φ

Ψ

)
, (2.27)

with Ẽ := E − E+
0 , H̃ := H − H+

0 , P̃nl(Ẽ) := Pnl(Ẽ + E+
0 ) = Pnl(E), and the role of gφ is 

played by

Φ = −θ+[∂t(ε0E
+
0 + χ ∗E0 + κ ∗ q(E0(·))

)− curlH+
0

]
Ψ = −θ+[∂tμH+

0 + curl0 E
+
0

]
.

(2.28)

Thus, the history of H only enters the equation via the initial value H0(0−). To ensure 
divB(H) = divμH = 0 for t ∈ (0, ∞), it suffices that divμH0(0−) = 0. In general, we will 
assume at least that μH0(0−) ∈H0(div, �).

In order to apply Proposition 2.8 or Proposition 2.12 to the Maxwell problem, we need 
∂t P̃nl(0) = 0. This can, however, always be achieved by substituting −∂t P̃nl(Ẽ) + Φ =
−∂t (P̃nl(Ẽ) − P̃nl(0)) + (Φ − ∂t P̃nl(0)) on the right-hand side of (2.27).
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Henceforth we shall drop the tilde and write E, H instead of Ẽ, H̃ , as well as Pnl instead of 
P̃nl, and always assume that the system is given in the evolutionary form (2.27), where Φ, Ψ ∈
H 1
	 (R, H) are supported in [0, ∞). There is also no loss in assuming that J = 0, since a nonzero 

J (supported in [0, ∞) and J ∈H 1
	 (R, H)) can be incorporated into the inhomogeneity Φ .

2.5. Higher spatial regularity

The interface setting and the choice of the domain � can be safely ignored in the results 
established so far (as long as the material laws are bounded linear operators on L2(�)3). In 
particular, � can be bounded or unbounded. However, the heterogeneity of the material plays 
a more important role if tools relying on spatial regularity are used. While spatial regularity is 
interesting in its own right, working in higher order Sobolev spaces also allows to control other 
types of nonlinearities for which Lipschitz-continuity fails in L2 (compare in particular the local 
Lipschitz estimates in Theorem 3.13 and 3.18).

From now on we assume that � = �1 � � � �2 is a bounded domain with interface � (the 
boundedness of � is a necessary requirement of Proposition 2.21). We want to establish condi-
tions that allow the solution E, H for k ∈ N to lie (pointwise almost everywhere in time) in the 
space

Hk :=Hk(�1)
3 ⊕Hk(�2)

3,

the latter being just the product Hk(�1)
3 ×Hk(�2)

3 endowed with the sum-norm

‖(u1, u2)‖Hk(�1)⊕Hk(�2)
= ‖u1‖Hk(�1)

+ ‖u2‖Hk(�2)
.

(Note that for functions u1 ∈ Hk(�1), u2 ∈ Hk(�2) we identify the pair (u1, u2) with the sum 
u1 + u2 of their zero extensions on �; in particular, Hk is a subspace of H0 = H = L2(�)3.)

We are in particular interested in k ≥ 2 since in this case Hk(Rd) is a multiplication algebra in 
dimension d ≤ 3. By extension, this carries over to Hk(�i), i.e., for each bilinear map b : R3 ×
R3 →R3 there exists a constant Cb > 0 such that

‖b(u, v)‖Hk ≤ Cb‖u‖Hk‖v‖Hk (2.29)

for all u, v ∈ Hk(�i)
3. The subsequent analysis relies on the following spatial regularity result 

adapted from [32].

Proposition 2.21. For some k ∈ N and i ∈ {1, 2}, let �i ⊂ R3 be bounded Lipschitz domains 
separated by the interface � = ∂�1 ∩ ∂�2 such that the complement of � :=�1 ∪�2 is simply 
connected, and ∂�i are of class Ck+1. Let ε be a bounded matrix-valued function on �, which, 
up to a complex factor, is Hermitian and uniformly positive definite, with ε, ε−1 ∈ Ck+1(�i)

3×3. 
Let u ∈ L2(�)3 satisfy either of the conditions

1. u ∈H0(curl, �) and εu ∈H(div, �), or
2. u ∈H(curl, �) and εu ∈H0(div, �).
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If � ∈ N , � ≤ k, and curlu ∈H�−1(�i)
3, div εu ∈H�−1(�i) for i = 1, 2, then u ∈H� and∑

i=1,2

‖u‖H�(�i)
≤ Cε,�1,�2

∑
i=1,2

(‖u‖L2(�i)
+ ‖curlu‖H�−1(�i)

+ ‖div εu‖H�−1(�i)

)
. (2.30)

Remark 2.22. Note that the regularity conditions on ∂�i of Proposition 2.21 imply that the 
set ∂� ∪ ∂�1 ∪ ∂�2 splits into disjoint surfaces with positive distance from each other. Thus, 
a completely flat interface is prohibited under this setup; indeed, a straight interface inside a 
bounded domain �would generate corners in ∂�1 and ∂�2. This technical regularity assumption 
is used in [32] to formulate the conditions on u equivalently as a boundary value problem and a 
transmission problem. This setting can be possibly generalized. One prospective approach would 
be to use the embeddings

H0(curl,�)∩H(div,�)⊆H 1(�)3

H(curl,�)∩H0(div,�)⊆H 1(�)3,

which hold for a C1,1 regular boundary ∂� or if � is a convex polyhedron, see [10, §3.4, §3,5].

Remark 2.23. The conditions on ε imply that, upon multiplication with a complex phase, 〈ε·, ·〉
and 〈ε−1·, ·〉 define equivalent inner products on L2(�)3. With ker(div) := {u ∈ H(div, �) :
divu = 0} we have

L2(�)3 = gradH 1
0 (�)⊕ ker(div)= gradH 1

0 (�)⊕ε ε
−1 ker(div),

where ⊕ε denotes orthogonal decomposition with respect to 〈ε·, ·〉. Moreover, the connectedness 
of R3

�� implies that for every F ∈ ker(div) there exists A ∈H(curl, �) ∩ ker(div) with F =
curlA. Thus, every u ∈L2(�)3 admits a Helmholtz decomposition

u= gradf + ε−1 curlA

with f ∈ H 1
0 (�), A ∈ H(curl, �) and ‖gradf ‖L2 + ‖curlA‖L2 ≤ Cε,�‖u‖L2 (see [31, Lemma 

3.8], [32, Lemma 3.7]).

The next result provides a conclusion similar to Proposition 2.21 if εu is allowed to jump in 
normal direction across the interface.

Proposition 2.24. Let �i and ε satisfy the assumptions of Proposition 2.21 for some k ∈ N and 
assume for � ∈N , � ≤ k, i = 1, 2 that curlu ∈H�−1(�i)

3, div εu ∈H�−1(�i), and

u ∈H0(curl,�), εu+ v ∈H(div,�)

for some v ∈ H�. Then u ∈H� and∑
‖u‖H�(�i)

≤ Cε,�1,�2

∑(‖u‖L2(�i)
+ ‖curlu‖H�−1(�i)

+ ‖div εu‖H�−1(�i)
+ ‖v‖H�(�i)

)
.

i=1,2 i=1,2
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Proof. In view of Remark 2.23 we can write

ε−1v = gradf + ε−1 curlA

with f ∈ H 1
0 (�), A ∈ H(curl, �) and ‖gradf ‖L2 ≤ Cε,�‖ε−1‖‖v‖L2 , where ‖ε−1‖ =

‖ε−1‖L∞(�)3×3 . In fact (see Lemma 5 in [8, Chapter IX, §1.4]), gradf ∈ H�(�i)
3 (i = 1, 2) 

since ε−1v ∈H�(�i)
3. Moreover, with gradH 1

0 (�) ⊆ ker(curl0) and curlH(curl, �) ⊆ ker(div)
we have curl0 gradf = 0 and div curlA = 0. Hence,

curl0 u= curl0 (u+ gradf ) and div (εu+ v)= div ε(u+ gradf ),

leading to u + gradf ∈H0(curl, �) and ε(u + gradf ) ∈H(div, �). Applying Proposition 2.21
now yields u + gradf ∈H�(�i)

3, together with the estimate

∑
i=1,2

‖u+ gradf ‖H�(�i)

≤ Cε,�1,�2

∑
i=1,2

(‖u+ gradf ‖L2(�i)
+ ‖curl(u+ gradf )‖H�−1(�i)

+ ‖div ε(u+ gradf )‖H�−1(�i)

)
≤ Cε,�1,�2

∑
i=1,2

(‖u‖L2(�i)
+ ‖curlu‖H�−1(�i)

+ ‖div εu‖H�−1(�i)
+ ‖gradf ‖H�(�i)

)
.

Since gradf ∈H�(�i)
3, also u ∈H�(�i)

3 and the claim follows from∑
i=1,2

‖u+ gradf ‖H�(�i)
≥
∑
i=1,2

(‖u‖H�(�i)
− ‖gradf ‖H�(�i)

)
≥ Cε

∑
i=1,2

(‖u‖H�(�i)
− ‖v‖H�(�i)

)
. �

Remark 2.25. To apply Proposition 2.21 to functions depending on time (or rather frequency in 
Fourier space), it is important to have uniform estimates, i.e., the dependence of the constants on 
ε should be removed. For simplicity, suppose that ε is constant on each �i and let u be given as 
in Proposition 2.21. In this case, a closer look at the proof in [32] reveals for α ∈ N3, |α| = �, 
that

‖∂α(εu)‖L2(�i)
≤ C

(‖curlu‖H�−1(�i)
+ ‖div εu‖H�−1(�i)

)
holds, with C independent of ε. One then easily obtains the estimate

‖u‖H�(�i)
≤ C(1 + ‖ε−1‖)(‖u‖L2(�i)

+ ‖curlu‖H�−1(�i)
+ ‖div εu‖H�−1(�i)

)
(2.31)

with C independent of ε.
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Analogously, if, instead, u and v are chosen as in Proposition 2.24, then we have

‖u‖H�(�i)
≤ C(1 + ‖ε−1‖)(‖u‖L2(�i)

+ ‖curlu‖H�−1(�i)
+ ‖div εu‖H�−1(�i)

+ ‖v‖H�(�i)

)
,

(2.32)
again with C independent of ε.

For a generalization, suppose now that instead ε is not constant, but smooth, ε ∈ Ck+1(�,

C3×3), and that all derivatives of ε, ε−1 up to order k + 1 are bounded. Then we obtain similar 
estimates of the form

‖u‖H�(�i)
≤ Cε

(‖u‖L2(�i)
+ ‖curlu‖H�−1(�i)

+ ‖div εu‖H�−1(�i)
+ ‖v‖H�(�i)

)
, (2.33)

where Cε depends on the norms of ε−1 and its derivatives.

For simplicity, we assume for the rest of this section homogeneous materials in each �i , 
i ∈ {1, 2}, where ε(∂t ) and μ satisfy the following condition.

(M1) The mapping z 	→
(
ε(z) 0

0 μ

)
is a linear material law. There exist ε1, ε2 : dom(ε) →

C3×3, such that for all z ∈ dom(ε), up to a complex factor, ε1(z), ε2(z) are Hermitian and 
positive definite, and

ε(z)= ε1(z)1�1 + ε2(z)1�2 .

Furthermore, μ = μ11�1 +μ21�2 with μ1, μ2 ∈ C3×3 Hermitian and uniformly positive 
definite.

Note in this case that ε(z) and μ satisfy the smoothness assumptions of Proposition 2.21 with 
k = ∞.

Under the condition (M1) on ε(∂t ) and μ, we consider next the linearized system (in evolu-
tionary form) (

∂t

(
ε(∂t ) 0

0 μ

)
+
(

0 − curl
curl0 0

))(
E

H

)
=
(
Φ −N

Ψ

)
. (2.34)

Remark 2.26. The term N acts purely as a placeholder for the nonlinearity ∂tPnl(E), which is 
added in Corollary 2.29. The jump of the material law at the interface leads to a jump of the 
electric field E in normal direction, hence, if for D(E) = ε(∂t )E +Pnl(E) we impose divD = 0
and hence [n · D]� = 0, then, in general, the normal components of Pnl(E) as well as N =
∂tPnl(E) are also discontinuous at the interface.

For � ∈N0 denote by ‖·‖	,� the norm in L2
	(R, H�).

Theorem 2.27 (H 2-regularity for the linear Maxwell system). Impose the conditions on � of 
Proposition 2.21 with k = 2, and condition (M1) on ε and μ. Let 	0, c ∈ (0, ∞) be such that 
Re zε(z) ≥ c for Re z > 	0, making the system (2.34) well-posed in L2

	(R, H), 	 > 	0. If addi-

tionally ε(z), ε(z)−1 are uniformly bounded for Rez > 	0 and if the data Φ, Ψ, N fulfill
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Φ ∈H 2
	 (R,H)∩L2

	(R,H1 ∩H(div,�)), ∂−1
t Φ ∈L2

	(R,H(div,�)), div ∂−1
t Φ ∈L2

	(R,H1)

Ψ ∈H 2
	 (R,H)∩L2

	(R,H1 ∩H0(div,�)), ∂−1
t Ψ ∈L2

	(R,H0(div,�)), div ∂−1
t Ψ ∈L2

	(R,H1),

and N ∈H 2
	 (R, H2), then E ∈ L2

	(R, H2 ∩H0(curl)), H ∈ L2
	(R, H2 ∩H(curl)) for all 	 > 	0

and

‖E‖	,2 � V (Φ,Ψ )+
2∑

j=0

‖∂jt N‖	,0 + ‖N‖	,2

‖H‖	,2 � V (Ψ,Φ)+
2∑

j=0

‖∂jt N‖	,0 + ‖N‖	,1,
(2.35)

where V (f, g) =∑2
j=0‖∂jt f ‖	,0 + ‖∂jt g‖	,0 + ‖f ‖	,1 + ‖div ∂−1

t g‖	,1 and with constants in-
dependent of E, H, Φ, Ψ, N, 	.

Proof. As a result of the solution theory (Theorem 2.5) and the time-regularity (Proposi-
tion 2.17), since Φ, Ψ, N ∈ H 2

	 (R, H), the solution fulfills E, H ∈ H 2
	 (R, H) with continuous 

dependence on the data,

‖∂jt E‖	,0,‖∂jt H‖	,0 ≤ C
(
‖∂jt (Φ −N)‖	,0 + ‖∂jt Ψ ‖	,0

)
, j ∈ {0,1,2}. (2.36)

Moreover, (E, H) ∈ L2
	(R, dom(A)) and

∂t ε(∂t )E − curlH =Φ −N

∂tμH + curl0 E = Ψ

}
(2.37)

hold in L2
	(R, L

2(�)3). Taking the Fourier–Laplace transform, we obtain from (2.37) pointwise 
for almost all ξ ∈ R,

curlL	H(ξ)= ε(	 + iξ)L	(∂tE)(ξ)−L	Φ(ξ)+L	N(ξ)

divμL	H(ξ)= divL	(∂
−1
t Ψ )(ξ)

curl0 L	E(ξ)= −μL	(∂tH)(ξ)+L	Ψ (ξ)

div (ε(	 + iξ)L	E(ξ)+L	(∂
−1
t N)(ξ))= divL	(∂

−1
t Φ)(ξ)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.38)

as identities in L2(�)3. Now Proposition 2.21 (with u = (L	H)(ξ), using u ∈ H0(div) ∩
H(curl)) and Proposition 2.24 (with u = (L	E)(ξ), v = (L	∂

−1
t N)(ξ)) yield L	E(ξ), L	H(ξ)

∈H 1(�i)
3. The same conclusion can be drawn for L	(∂tE), L	(∂tH); indeed, apply ∂t to (2.37)

and take the Fourier–Laplace transform to obtain the following identities in L2(�)3, again for 
almost all ξ ∈R:
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curlL	(∂tH)(ξ)= ε(	 + iξ)L	(∂
2
t E)(ξ)−L	(∂tΦ)(ξ)+L	(∂tN)(ξ)

divμL	(∂tH)(ξ)= divL	Ψ (ξ)

curl0 L	(∂tE)(ξ)= −μL	(∂
2
t H)(ξ)+L	(∂tΨ )(ξ)

div (ε(	 + iξ)L	(∂tE)(ξ)+L	N(ξ))= divL	Φ(ξ),

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.39)

hence L	(∂tE)(ξ), L	(∂tH)(ξ) ∈ H 1(�i)
3 follows by the same argument. This, together with 

the assumptions on the data Φ, N, Ψ implies that (2.38) are in fact identities in H 1(�1)
3 ⊕

H 1(�2)
3, which yields L	E(ξ), L	H(ξ) ∈H 2(�i)

3 for almost all ξ ∈ R, once more by Propo-
sition 2.21 and Proposition 2.24, together with the estimates (cf. Remark 2.25)

‖L	E(ξ)‖H 2 ≤ C(1 + ‖ε(	 + iξ)−1‖)(‖L	E(ξ)‖L2 + ‖curl0 L	E(ξ)‖H 1

+ ‖div ε(	 + iξ)L	E(ξ)‖H 1 + ‖L	N(ξ)‖H 2

)
‖L	H(ξ)‖H 2 ≤ C(1 + ‖μ−1‖) (‖L	H(ξ)‖L2 + ‖curlL	H(ξ)‖H 1 + ‖divμL	H(ξ)‖H 1

)
,

where the norms are taken in �i . After integration, using the boundedness of μ−1, ε(·)−1 and 
the Plancherel theorem, we have

‖E‖	,2 �
(
1 + sup

Re z≥	0

‖ε(z)−1‖) (‖E‖	,0 + ‖curl0 E‖	,1 + ‖div ε(∂t )E‖	,1 + ‖N‖	,2
)

‖H‖	,2 � (1 + ‖μ−1‖) (‖H‖	,0 + ‖curlH‖	,1 + ‖divμH‖	,1
)

⎫⎬⎭
(2.40)

with constants independent of E, H, N, 	. Now we can employ (2.37) and estimates of type 
(2.31), (2.32) recursively to replace the curl- and div-terms on the right-hand side:

‖curl0 E‖	,1 = ‖−μ∂tH +Ψ ‖	,1
≤ ‖∂tH‖	,1 + ‖Ψ ‖	,1
� ‖∂tH‖	,0 + ‖curl ∂tH‖	,0 + ‖divμ∂tH‖	,0 + ‖Ψ ‖	,1
� ‖∂tH‖	,0 + ‖ε(∂t )∂2

t E − ∂tΦ + ∂tN‖	,0 + ‖divΨ ‖	,0 + ‖Ψ ‖	,1
� ‖∂tH‖	,0 + ‖∂2

t E‖	,0 + ‖∂tΦ‖	,0 + ‖∂tN‖	,0 + ‖Ψ ‖	,1
‖div ε(∂t )E‖	,1 � ‖div ∂−1

t Φ‖	,1 + ‖div ∂−1
t N‖	,1

≤ ‖div ∂−1
t Φ‖	,1 + ‖∂−1

t N‖	,2
≤ ‖div ∂−1

t Φ‖	,1 + 	−1‖N‖	,2
and similarly,

‖curlH‖	,1 � ‖ε(∂t )∂tE −Φ +N‖	,1
� ‖∂tE‖	,1 + ‖Φ‖	,1 + ‖N‖	,1
� ‖∂tE‖	,0 + ‖curl ∂tE‖	,0 + ‖div ε(∂t )∂tE‖	,0 + ‖Φ‖	,1 + ‖N‖	,1
� ‖∂tE‖	,0 + ‖−μ∂2

t H + ∂tΨ ‖	,0 + ‖div(Φ −N)‖	,0 + ‖Φ‖	,1 + ‖N‖	,1
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� ‖∂tE‖	,0 + ‖∂2
t H‖	,0 + ‖∂tΨ ‖	,0 + ‖Φ‖	,1 + ‖N‖	,1

‖divμH‖	,1 = ‖div ∂−1
t Ψ ‖	,1.

Finally estimating ‖∂jt E‖	,0, ‖∂jt H‖	,0 with the help of (2.36) we obtain (2.35). �
Remark 2.28. Theorem 2.27 shows that one can trade regularity in time of order k for regularity 
in space of the same order. Here we have fixed k = 2, but spatial Hk-regularity of the solution 
can be achieved for any k ≥ 1. To this end, we must assume sufficient regularity of the data, for 
instance

Φ ∈
k⋂

j=0

Hj
	 (R,Hk−j−1 ∩H(div,�))

Ψ ∈
k⋂

j=0

Hj
	 (R,Hk−j−1 ∩H0(div,�))

N ∈
k⋂

j=0

Hj
	 (R,Hk−j ).

By proceeding inductively as in the proof of Theorem 2.27, one obtains estimates similar to 
(2.35) of ‖E‖	,k , ‖H‖	,k in terms of the higher Sobolev norms of Φ, Ψ, N .

We now extend the regularity to the nonlinear case, replacing N by a map ∂tPnl(·).

Corollary 2.29 (H 2-regularity for the nonlinear Maxwell system I). Suppose that the domain �
and the linear material law ε satisfy the conditions of Theorem 2.27 and impose the regularity 
assumptions on the data Φ, Ψ ∈ L2

	(R, L
2(�)3). Let Pnl be a nonlinearity for which

∂
j
t Pnl : L2

	(R,H2)→ L2
	(R,H2) (j ∈ {1,2,3})

are uniformly Lipschitz-continuous and satisfy ∂jt Pnl(0) = 0 for j ∈ {1, 2, 3}, and

L	 :=
3∑

j=1

‖∂jt Pnl‖Lip(L2
	(R,H2)→L2

	(R,H2)) = o(1) as 	 → ∞.

Then, for 	1 ≥ 	0 large enough, the system(
∂t

(
ε(∂t ) 0

0 μ

)
+
(

0 − curl
curl0 0

))(
E

H

)
=
(
Φ − ∂tPnl(E)

Ψ

)
(2.41)

admits a unique solution (E, H) with E ∈ L2
	(R, H2 ∩ H0(curl, �)), H ∈ L2

	(R, H2 ∩
H(curl, �)) for 	 > 	1.
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Proof. By assumption, ∂tPnl maps L2
	(R, H2) into H 2

	 (R, H2). Define the map T	 (	 � 0) by

T	(u) :=
(
∂t

(
ε(∂t ) 0

0 μ

)
+
(

0 − curl
curl0 0

))−1(
Φ − ∂tPnl(u)

Ψ

)
. (2.42)

Then by Theorem 2.27, T	 maps L2
	(R, H2) into L2

	(R, H2)2 and from (2.35) we have the esti-
mate

‖T	(u)− T	(v)‖	,2 ≤ CL	‖u− v‖	,2
with C independent of 	. By assumption on L	, the product CL	 is smaller than 1 for large 	, 
thus, denoting by π1, π2 : C3 × C3 → C3 the projections π1(u, v) = u and π2(u, v) = v, the 
map π1 ◦ T	 is a contraction on L2

	(R, H2) for large 	 > 	0. The solution to (2.41) is given by 
the unique fixed point E = π1T	(E), H = π2T	(E). �

The following is a variant of Corollary 2.29 in the spirit of Proposition 2.12.

Corollary 2.30 (H 2-regularity for the nonlinear Maxwell system II). Suppose that the domain 
� and the linear material law ε satisfy the conditions of Theorem 2.27. Impose the regularity 
assumptions on the data Φ, Ψ ∈ L2

	(R, L
2(�)3) and suppose further that Φ, Ψ are supported in 

[0, ∞). Let Pnl be a causal nonlinearity for which

∂
j
t Pnl : L2

	(R,H2)→ L2
	(R,H2) (j ∈ {1,2,3})

satisfy ∂jt Pnl(0) = 0 as well as the local Lipschitz estimate

‖∂jt Pnl(u)− ∂
j
t Pnl(v)‖	,2 ≤ C

(‖u‖	,2 + ‖v‖	,2
)α ‖u− v‖	,2

with C, α > 0. Then, for 	1 ≥ 	0 large enough, the system (2.41) admits a unique solution (E, H)

with E ∈ L2
	(R, H2 ∩H0(curl, �)), H ∈ L2

	(R, H2 ∩H(curl, �)) for 	 > 	1.

Proof. The proof follows a similar idea to that of Proposition 2.12. Note that since suppΦ,
suppΨ ⊆ [0, ∞), V	(Φ, Ψ ) = V (Φ, Ψ ) defined in Theorem 2.27 fulfills V	(Φ, Ψ ) = o(1) as 
	 → ∞. Consider the map E 	→ F	(E) := π1T	(E), where T	 is defined in (2.42) and π1 de-
notes the projection π1(E, H) =E. Then by (2.35) we have

‖F	(U)‖	,2 � V	(Φ,Ψ )+
3∑

j=1

‖∂jt Pnl(U)‖	,2 ≤ c
(
V	(Φ,Ψ )+ ‖U‖α+1

	,2

)
,

‖F	(U)− F	(V )‖	,2 �
3∑

j=1

‖∂jt Pnl(U)− ∂
j
t Pnl(V )‖	,2 ≤ d(‖U‖	,2 + ‖V ‖	,2)α‖U − V ‖	,2

with c, d > 0. We conclude that F	 is a contraction on a closed ball Br ⊂ L2
	(R, H2) of suffi-

ciently small radius r > 0, if 	 > 0 is sufficiently large. �
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Example 2.31. We adapt the quadratic model

P (2)(E)(t)=
∫∫

κ(t − s1, t − s2)q(E(s1),E(s2))ds1 ds2,

in Example 2.15 to the H2-setting. For simplicity we assume that κ ∈ C3((0, ∞)2)3×3 is com-
pactly supported, hence each time derivative of P (2)(E) is again of the form above:

∂�t P
(2)(E)(t)=

∫∫
(∂1 + ∂2)

�κ(t − s1, t − s2) q(E(s1),E(s2))ds1 ds2, � ∈ N,

with (∂1 + ∂2)
�κ ∈ C((0, ∞)2)3×3 bounded.

As for the spatial nonlinearity, by the algebra property of H2, each bilinear map q : R3 ×
R3 →R3 extends to a bilinear and bounded map q : H2 ×H2 → H2, and we have

‖q(u(τ1), u(τ2))− q(v(τ1), v(τ2))‖H2

� ‖u(τ1)− v(τ1)‖H2‖u(τ2)‖H2 + ‖u(τ2)− v(τ2)‖H2‖u(τ1)‖H2 .

This can be generalized to x-dependent bilinear maps like

q̃(u, v)(x)=M(x)q(u(x), v(x))

with q as above and M of class H 2 on each �i (i ∈ {1, 2}), as well as to q like in Example 2.15, 
i.e.,

q(u, v)(x)=
∫
�

∫
�

�(x, y1, y2)u(y1)v(y2)dy1 dy2

with the same regularity assumption on � = (�ijk)i,j,k∈{1,2,3}.
Now using a smooth cutoff in time, i.e.,

P
(2)
T := η · P (2), η ∈ C∞

c (R)

and denoting T := |suppη|, we obtain for j ∈ {1, 2, 3} and 	 ∈R similar to (2.21)

‖∂jt P (2)
T (U)− ∂

j
t P

(2)
T (V )‖	,2 ≤ C

√
T e	T

(‖U‖	,2 + ‖V ‖	,2
)‖U − V ‖	,2

with C independent of U, V, 	.

3. Exponential stability of the Maxwell system on a bounded domain

In [28], exponential stability for linear equations(
∂tM(∂t )+A

)
u= f (3.1)

was investigated. Assuming (3.1) is well-posed in the range of spaces L2
	(R, X), 	 > 	0, the 

equation is said to be exponentially stable with decay rate ν0 > 0, if the implication
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f ∈ L2
	(R,X)∩L2−ν(R,X) =⇒ u ∈ L2−ν(R,X) (0 ≤ ν < ν0, 	 > 	0) (3.2)

holds. If s0(M, A) denotes the infimum over 	 ∈ R such that the equation is well-posed in 
L2
	(R, X), then exponential stability with rate ν0 is essentially equivalent (under some natu-

ral assumptions on the domain of M , [28, Theorem 2.1.3]) to s0(M, A) ≤ −ν0. This implies in 
particular the continuous dependence on the data in the L2−ν-norm, i.e., ‖u‖−ν,0 ≤ K‖f ‖−ν,0

with K independent of f ∈ L2
	(R, X) ∩L2−ν(R, X).

There are two abstract criteria to ensure exponential stability of the linear system (2.4). The 
first requires strict and uniform accretivity of zM(z). (See also [24, Chapter 11].) Recall that a 
linear operator A : dom(A) ⊂X →X on a Hilbert space X is called m-accretive, if Re〈Ax, x〉 ≥
0 for all x ∈ dom(A) and A + λ is onto for all λ ∈ CRe>0. In particular, every skew-selfadjoint 
operator is m-accretive.

Proposition 3.1 ([28, Theorem 2.1.5]). Let A be m-accretive, let ν0 > 0 be such that CRe>−ν0 �

dom(M) is discrete, and assume that

∃c > 0∀z ∈ CRe>−ν0 ∩ dom(M) : Re zM(z)≥ c.

Then the linear problem (3.1) is well-posed and exponentially stable with decay rate ν0.

The latter condition can be relaxed if one assumes that A is invertible. Let B[0, δ] = {z ∈ C :
|z| ≤ δ} denote the closed disk with radius δ > 0.

Proposition 3.2 ([28, Theorem 2.1.6]). Let A be m-accretive and boundedly invertible, let ν0 > 0
be such that CRe>−ν0 � dom(M) is discrete, and assume that for some δ > 0

(i) sup
z∈dom(M)∩B[0,δ]

‖zM(z)‖ <
1

‖A−1‖
(ii) ∃c > 0 ∀z ∈ CRe>−ν0 ∩ dom(M) �B[0, δ] : Re zM(z) ≥ c.

Then the linear problem (3.1) is well-posed and exponentially stable with decay rate ν0.

These criteria can be applied to second-order equations of the form

(
∂2
t M(∂t )+C∗C

)
u= f (3.3)

where C : dom(C) ⊆ X0 → X1 is assumed boundedly invertible and M(z) = M0(z) +
z−1M1(z), with M0, M1 : dom(M) ⊆ C → B(X0) analytic and bounded. The strategy relies 
on the substitution

v = ∂tu+ du, q = −Cu (d > 0)

which converts (3.3) into the first-order system(
∂tMd(∂t )+

(
0 −C∗
C 0

))(
v

q

)
=
(
f

0

)
, (3.4)
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where

Md(z)=
(
M(z) 0

0 1

)
+ z−1d

(−M0(z)
(
M1(z)− dM0(z)

)
C−1

0 1

)
.

The accretivity properties of zM(z) are inherited by zMd(z), provided d > 0 is sufficiently 
small, and Proposition 3.1 resp. Proposition 3.2 are applicable, see [28, §2.2], [24, Section 11.4]. 
We mention explicitly the following result.

Theorem 3.3. Let M be given by M(z) := M0(z) + z−1M1(z), where M0, M1 : dom(M) ⊆
C → B(X0) are analytic and bounded, CRe>−ν̃ � dom(M) is discrete for some ν̃ > 0, and 
limz→0 M1(z) = 0. If the condition

∀δ > 0 ∃ν, c > 0 ∀z ∈ dom(M)∩CRe>−ν �B[0, δ] : Re zM(z)≥ c

is met, then there exist d0, ν0 > 0 such that system (3.4) with d = d0 is exponentially stable with 
decay rate ν0.

Remark 3.4. We note that v, q ∈ L2−ν(R, X0) already implies u ∈ H 1−ν(R, X0) and Cu ∈
L2−ν(R, H1), with

‖u‖−ν,0,‖∂tu‖−ν,0,‖Cu‖−ν,0 � ‖f ‖−ν,0.

Remark 3.5. We will subsequently use Theorem 3.3 to formulate stability results for Maxwell’s 
equations. As before, the presence of an interface will play no role at first, and only be of impor-
tance in the later Section 3.2.1 when higher spacial regularity is involved.

3.1. Exponential stability of the E-field via the second-order formulation

A first observation is that the material law M(∂t) =
(
ε(∂t ) 0

0 μ

)
associated with the linearized 

system (
∂t

(
ε(∂t ) 0

0 μ

)
+
(

0 − curl
curl0 0

))(
E

H

)
=
(
Φ

Ψ

)
(3.5)

does not fulfill any of the strict accretivity conditions above, since

Re

〈
zM(z)

(
0

u

)
,

(
0

u

)〉
= (Re z)〈μu,u〉 = 0,

whenever Re z = 0, independently of ε. However, as we show next, in the second-order formu-
lation under suitable assumptions on ε the accretivity assumption of Theorem 3.3 is satisfied.

Recall that well-posedness of (3.5) means that(
∂t

(
ε(∂t ) 0

0 μ

)
+
(

0 − curl
curl0 0

))(
E

H

)
=
(
Φ

Ψ

)
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holds as an equation in L2
	(R, H)2 for 	 large enough. If the data satisfy the regularity as-

sumption Φ, Ψ ∈ H 1
	 (R, H), then by Theorem 2.5 (i) we can drop the closure bar and (3.5)

itself holds in L2
	(R, H)2. Applying ∂t to the first line, we can insert the second line via 

∂t curlH = curl ∂tH = curlμ−1Ψ − curlμ−1 curl0 E to obtain the second-order system

(∂2
t ε(∂t )+ curlμ−1 curl0)E = ∂tΦ + curlμ−1Ψ. (3.6)

We will impose the following conditions on the permittivity.

(M2) For all δ > 0 there exist ν > 0 and c > 0 such that

∀z ∈ CRe>−ν �B[0, δ] : Re zε(z)≥ c.

(M3) ε(∂t ) =ε0 +χ(∂t ) with ε0∈B(H) selfadjoint and uniformly positive definite, limz→0 zχ(z)

= 0, and there exists ν1 > 0 such that z 	→ χ(z) and z 	→ zχ(z) are bounded in CRe>−ν1

and

∀z ∈ CRe>−ν1 : ε0 + Reχ(z)≥ c1

with c1 > 0.

Under these assumptions, ε(z) = ε0 + z−1(zχ(z)) satisfies the conditions of Theorem 3.3 with 
M0 = ε0 and M1(z) = zχ(z).

Remark 3.6. An example of a physically relevant ε(∂t ) compatible with (M2) and (M3) is the 
one given by the Drude–Lorentz model, see Appendix A.

Conditions (M2) and (M3) are sufficient to obtain a notion of exponential stability for the 
second-order system (3.6) on a bounded domain �, which is similar to that in (3.2). Note that 
(3.6) is not yet of the form (3.3), because curl, curl0 are not invertible. We need two preparatory 
results, in which we follow a strategy akin to that in [29].

Lemma 3.7. Let K0, K1 be Hilbert spaces and C : dom(C) ⊆ K0 → K1 a densely defined and 
closed operator with closed range. Let μ ∈ B(K1) be selfadjoint and uniformly positive definite. 
Denote by ιk : ker(C)⊥ ↪→ K0 the canonical embedding. Then

ι∗kC∗μCιk : dom(ι∗kC∗μCιk)⊆ ker(C)⊥ → ker(C)⊥

is selfadjoint, continuously invertible, and nonnegative.

Proof. Let ιr : ran(C) ↪→ K1 be the canonical embedding. Then ι∗rCιk is injective, surjective, 
and closed, thus, by the closed graph theorem, continuously invertible. Note also that since 
ran(C) is closed, ran(C∗) is closed (see [5, Theorem 2.19]). Now it is not difficult to see that

ι∗C∗ιr ι∗r μ ιr ι
∗
r Cιk = ι∗C∗μCιk
k k
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(for C∗ιr ι∗r = C∗ use that ker(C∗)⊥ = ran(C)). It follows that ι∗kC∗μ Cιk is the composition of 
the three continuously invertible mappings

ι∗kC∗ιr , ι∗r μ ιr , ι∗r Cιk,

and that (ι∗kC∗μ Cιk)∗ = ι∗kC∗μ Cιk . Thus we obtain continuous invertibility and selfadjointness. 
The nonnegativity follows from the nonnegativity of μ. �
Remark 3.8. In the situation of the previous lemma we have

ι∗kC∗μCιk = B∗B

for some continuously invertible operator B : dom(B) ⊆ ker(C)⊥ → ker(C)⊥. Indeed, this is a 
direct consequence of the lemma in conjunction with the spectral theorem for unbounded selfad-
joint operators.

Lemma 3.9. Let H be a Hilbert space and H0 ⊂ H a closed subspace. Denote by ι0 : H0 ↪→
H and ι1 : H ⊥

0 ↪→ H the canonical embeddings. Let T ∈ B(H ) be a bounded linear operator 
and define

Tjk := ι∗j T ιk for j, k ∈ {0,1}.

If ReT ≥ d for some d > 0, then also

ReT11 ≥ d, Re
(
T00 − T01T

−1
11 T10

)≥ d.

Proof. For φ ∈ H ⊥
0 we compute

Re〈T11φ,φ〉 = Re〈T ι1φ, ι1φ〉 ≥ d〈ι1φ, ι1φ〉 = d‖φ‖2,

confirming ReT11 ≥ d . In particular, T11 is invertible. As an operator on H0 ⊕ H ⊥
0 we can 

identify

T =
(
T00 T01
T10 T11

)
,

and setting

Q=
(

1 0

−(T01T
−1
11

)∗ 1

)
, Q∗ =

(
1 −T01T

−1
11

0 1

)
, R =

(
T00 − T01T

−1
11 T10 0

T10 − T11

(
T −1

11

)∗
T ∗

01 T11

)

we have the factorization

R =Q∗TQ.

Now we compute for φ ∈ H0,
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Re〈(T00 − T01T
−1
11 T10)φ,φ〉 = Re〈R

(
φ

0

)
,

(
φ

0

)
〉

= Re〈Q∗TQ
(
φ

0

)
,

(
φ

0

)
〉

= Re〈TQ
(
φ

0

)
,Q

(
φ

0

)
〉 ≥ d〈Q

(
φ

0

)
,Q

(
φ

0

)
〉 ≥ d‖φ‖2. �

In the following, we apply this result to H = H = L2(�)3, where � is a bounded weak 
Lipschitz domain (a bounded domain with a local Lipschitz boundary), and H0 = ran(curl). As 
a consequence of the Picard–Weber–Weck selection theorem (see Lemma B.2), H0 is a closed 
subspace of H. Lemma 3.9 can be applied to the second-order formulation (3.6) if Φ, Ψ are 
regular enough, as we show next. Let �0 : H → ker(curl0) denote the canonical projection.

Theorem 3.10 (Exponential stability for the E-field of the linear Maxwell equations). Let 
� ⊂ R3 be a bounded, weak Lipschitz domain. Assume that the material law ε(∂t ) = ε0 + χ(∂t )

satisfies (M2) and (M3), and that μ ∈ B(H) is selfadjoint and uniformly positive definite. Let 
(Φ, Ψ ) ∈ L2

	(R, H×H) for large 	 > 0, and let (E, H) ∈L2
	(R, H×H) be the unique solution 

to (2.9) provided by Theorem 2.5. Let g := ∂tΦ + curlμ−1Ψ and h :=�0 ∂
−1
t Φ . Then there ex-

ists ν0 > 0 such that if ν < ν0, g ∈ L2−ν(R, H), and h ∈ L2−ν(R, ker(curl0)), then E ∈ L2−ν(R, H)

and

‖E‖−ν,0 ≤K
(‖g‖−ν,0 + ‖h‖−ν,0

)
(3.7)

with K > 0 independent of E, g, h.

Proof. Let Φ, Ψ ∈ C∞
c (R, H), and let E, H ∈ L2

	(R, H) for large 	 > 0 fulfill(
∂t

(
ε(∂t ) 0

0 μ

)
+
(

0 − curl
curl0 0

))(
E

H

)
=
(
Φ

Ψ

)
.

Due to the regularity of the right-hand side we can drop the closure bar and obtain the second-
order system (3.6) for E, thus

(∂2
t ε(∂t )+ curlμ−1 curl0)E = g. (3.8)

The aim is to show that E ∈ L2
	(R, H) additionally satisfies E ∈ L2−ν(R, H), if g ∈ L2−ν(R, H)

and h ∈ L2−ν(R, ker(curl0)) for small ν > 0. To this end, we set

H0 := ran(curl), H ⊥
0 = ker(curl0).

Denote by ι0 : H0 ↪→H, ι1 : H ⊥
0 ↪→H the canonical embeddings and define

Ej := ι∗jE, gj := ι∗j g, εjk(∂t ) := ι∗j ε(∂t )ιk for j, k ∈ {0,1}

(note that ι∗ =�0, thus h = ∂−2
t g1). Then (3.8) can be written equivalently in the form
1
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[
∂2
t

(
ε00(∂t ) ε01(∂t )

ε10(∂t ) ε11(∂t )

)
+
(
ι∗0 curlμ−1 curl0 ι0 0

0 0

)](
E0
E1

)
=
(
g0
g1

)
. (3.9)

Next we observe that, by assumption (M3),

∂t ε01(∂t ) (∂t ε11(∂t ))
−1 : L2−ν(R,H

⊥
0 )→ L2−ν(R,H0)

is a bounded linear operator for ν < ν1. Indeed, since ε is bounded on CRe>−ν1 , so is ε01, and 
with Lemma 3.9 also ε11(·)−1. Hence,

z 	→ zε01(z) (zε11(z))
−1 = ε01(z) (ε11(z))

−1

is bounded on CRe>−ν1 as desired. Now apply this operator to the second equation in (3.9) and 
subtract the result from the first equation to obtain

[
∂t

(
∂t
(
ε00(∂t )− ε01(∂t ) (ε11(∂t ))

−1 ε10(∂t )
)

0
∂t ε10(∂t ) ∂t ε11(∂t )

)

+
(
ι∗0 curlμ−1 curl0 ι0 0

0 0

)](
E0
E1

)
=
(
g0 − ∂t ε01(∂t ) (∂t ε11(∂t ))

−1 g1
g1

)
. (3.10)

Regarding the equation for E0, we have that ι∗0 curlμ−1 curl0 ι0 is selfadjoint, continuously in-
vertible, and nonnegative on H0. In view of Remark 3.8 there exists a densely defined and 
boundedly invertible operator C such that

C∗C = ι∗0 curlμ−1 curl0 ι0.

Hence, the equation for E0 is of the form (3.3),(
∂2
t ε̃(∂t )+C∗C

)
E0 = g̃,

with g̃ = g0 − ∂t ε01(∂t ) (∂t ε11(∂t ))
−1 g1 and ε̃(z) = ε00(z) − ε01(z) (ε11(z))

−1 ε10(z). We ver-
ify that ε̃ satisfies the accretivity conditions of Theorem 3.3. Indeed, with Lemma 3.9 we 
have Re zε̃(z) ≥ c whenever Re zε(z) ≥ c, thus ε̃ fulfills (M2). Furthermore, we find that 
ε̃(z) =M0(z) + z−1M1(z) with

M0(z)= ε0,00 − ε0,01ε11(z)
−1ε0,10

M1(z)= z
(
χ00(z)− ε0,01ε11(z)

−1χ10(z)− χ01(z)ε11(z)
−1ε0,10 − χ01(z)ε11(z)

−1χ10(z)
)
,

where, due to (M3), M0(·), M1(·) are uniformly bounded on CRe>−ν1 and limz→0 M1(z) = 0. 
Consequently, there exists ν0 ∈ (0, ν1] such that(

∂2
t

(
ε00(∂t )− ε01(∂t )ε11(∂t )

−1ε10(∂t )
)

+C∗C
)−1

maps L2 (R, H0), ν < ν0, causally into itself. Therefore, if we take ν < ν0, then
−ν
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‖E0‖−ν,0 ≤ ∥∥g0 − ∂t ε01(∂t ) (∂t ε11(∂t ))
−1 g1

∥∥−ν,0 ≤K‖g‖−ν,0

with some K > 0 independent of g and E.
Turning to the equation for E1 in (3.10),

∂2
t ε10(∂t )E0 + ∂2

t ε11(∂t )E1 = g1,

we infer

E1 = (∂t ε11(∂t ))
−1 ∂−1

t g1 − (∂t ε11(∂t ))
−1 ∂t ε10(∂t )E0

= ∂t (∂t ε11(∂t ))
−1 ∂−2

t g1 − (∂t ε11(∂t ))
−1 ∂t ε10(∂t )E0.

Since by assumption ∂−2
t g1 = h ∈ L2−ν(R, H

⊥
0 ) ⊆ L2−ν(R, H), and since

∂t (∂t ε11(∂t ))
−1 and (∂t ε11(∂t ))

−1 ∂t ε10(∂t )

leave L2−ν(R, H) invariant, we obtain

‖E1‖−ν,0 � ‖∂−2
t g1‖−ν,0 + ‖E0‖−ν,0 � ‖∂−2

t g1‖−ν,0 + ‖g0‖−ν,0.

The assertion now follows due to the density of C∞
c (R, H) in L2−ν(R, H). �

Since the proof relies on an application of Theorem 3.3, in view of Remark 3.4 in fact a 
stronger result is implied by Theorem 3.10.

Corollary 3.11. Under the assumptions of Theorem 3.10, and with the notation in the proof, the 
following holds:

E0, ∂tE0,CE0 ∈ L2−ν(R,H0)

‖E0‖−ν,0,‖∂tE0‖−ν,0,‖CE0‖−ν,0 � ‖g‖−ν,0

and

E1, ∂tE1 ∈ L2−ν(R,H
⊥

0 )

‖E1‖−ν,0 � ‖g‖−ν,0 + ‖h‖−ν,0

‖∂tE1‖−ν,0 � ‖∂tE0‖−ν,0 + ‖∂−1
t g1‖−ν,0 � ‖g‖−ν,0 + ‖∂−1

t g1‖−ν,0.

Remark 3.12. Obtaining exponential decay for the H -field through a second-order system is not 
completely analogous, the problem being that the material law ε(∂t) is non-instantaneous and, 
due to jumps, in general does not commute with curl. We address this issue in Section 3.2.
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3.1.1. Exponential stability of the nonlinear second-order system
We want to use the results in the linearized case to obtain exponential stability for the 

nonlinear system (2.8). However, the fixed-point argument we employed previously to obtain 
well-posedness in L2

	, for large 	 > 0, cannot be repeated in L2−ν (for ν < ν0). This can be seen 
in (2.14), where a large 	 > 0 is needed to ensure the contraction property on L2

	. As we show 
next, this problem can be avoided if we restrict ourselves to small solutions.

For ε > 0 we denote by Bν
ε (R, H) := {u ∈ L2−ν(R, H) : ‖u‖−ν,0 ≤ ε} the closed ε-ball in 

L2−ν(R, H).

Theorem 3.13 (Small solutions of the nonlinear system in H). Under the conditions of Theo-
rem 3.10, assume that for some ν̃ > 0,

g = ∂tΦ + curlμ−1Ψ ∈ L2
−ν̃ (R,H) and h=�0∂

−1
t Φ ∈ L2

−ν̃ (R,ker(curl0)),

and suppose there exists C > 0 such that each F ∈ {∂2
t Pnl, �0Pnl} satisfies F(0) = 0 and

∀u,v ∈ L2−ν(R,H) : ‖F(u)− F(v)‖−ν,0 ≤ C
(‖u‖−ν,0 + ‖v‖−ν,0

)‖u− v‖−ν,0 (3.11)

for all ν ≤ ν̃. Then there exist ν0, ε0, c0 > 0 such that for all ε ∈ (0, ε0), ν < ν0, the following 
holds: If g, h ∈ Bν

c0ε
(R, H), then the nonlinear second-order system(

∂2
t ε(∂t )+ curlμ−1 curl0

)
E = −∂2

t Pnl(E)+ g

admits a unique solution E ∈ Bν
ε (R, H).

Proof. By Theorem 3.10 there exists ν0 ∈ (0, ν̃] such that for all ν < ν0 the solution operator

T := (
∂2
t ε(∂t )+ curlμ−1 curl0

)−1

for the linearized second-order system maps the subspace

{f ∈ L2−ν(R,H) :�0∂
−2
t f ∈ L2−ν(R,ker(curl0))}

into L2−ν(R, H). We show that if ε, c0 > 0 are small, then the map S given by

S(u) := T (g − ∂2
t Pnl(u))

is a contraction on Bν
ε (R, H) if g ∈ Bν

c0ε
(R, H) and h = �0∂

−2
t g ∈ Bν

c0ε
(R, H). Indeed, for 

fixed u ∈ Bν
ε (R, H) we have with (3.11) and the estimate in Theorem 3.10 (replacing Φ by 

Φ − ∂tPnl(u)),

‖S(u)‖−ν,0 ≤K
(‖∂2

t Pnl(u)‖−ν,0 + ‖�0Pnl(u)‖−ν,0 + ‖g‖−ν,0 + ‖h‖−ν,0
)

≤K
(
2C‖u‖2−ν,0 + ‖g‖−ν,0 + ‖h‖−ν,0

)
≤ 2KCε2 + 2Kc0ε

= ε(2KCε + 2Kc0),
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and similarly,

‖S(u)− S(v)‖−ν,0 = ‖T (∂2
t Pnl(u)− ∂2

t Pnl(v)
)‖−ν,0

≤K
(‖∂2

t Pnl(u)− ∂2
t Pnl(v)‖−ν,0 + ‖�0Pnl(u)−�0Pnl(v)‖−ν,0

)
≤ 2KC

(‖u‖−ν,0 + ‖v‖−ν,0
)‖u− v‖−ν,0

≤ 4KCε‖u− v‖−ν,0

Setting ε < ε0 := 1
4KC

and c0 := 1
4K , the claim follows. �

Example 3.14. Consider the fully nonlocal quadratic polarization Pnl in Example 2.15 given by

Pnl(E)(t)=
∫∫

κ(t − s1, t − s2) q(E(s1),E(s2))ds1 ds2

with q(u, v) = ∫
�

∫
�
�( · , y1, y2)u(y1)v(y2) dy1 dy2, where � ∈ L2(�3)3×3×3. For simplicity 

we assume again that κ is compactly supported in (0, ∞)2, say κ ∈ C∞
c ((0, ∞)2)3×3, and have 

thus

∂�t Pnl(E)(t)=
∫∫

(∂1 + ∂2)
�κ(t − s1, t − s2) q(E(s1),E(s2))ds1 ds2, � ∈ N,

with K� := (∂1 + ∂2)
�κ ∈ C∞

c ((0, ∞)2)3×3 ⊆ L1
	(R

2)3×3 for all 	 ∈ R. In view of Section 2.4

we can assume that suppE, suppH ⊆ [0, ∞). Since each ∂�t Pnl maps L2−ν(R, H) causally into 
L2−2ν(R, H), we have again ∂�t Pnl(E) ∈ L2−ν(R, H). In particular, estimate (3.11) holds for F =
�0Pnl and F = ∂2

t Pnl.

3.2. Exponential stability of the first-order system

To obtain exponential decay of the H -field, we now consider exponential stability for the 
first-order system. In fact, the next result is a refinement of Theorem 3.10, and also relies on the 
second-order formulation (3.6).

Denote by �0 : H → ker(curl0) and �1 : H → ker(curl) the canonical projections.

Theorem 3.15 (Exponential stability of the linear Maxwell equations). Let � be a bounded weak 
Lipschitz domain, let ε(∂t ) = ε0 + χ(∂t ) be a linear material law satisfying (M2) and (M3). 
Furthermore, let μ be selfadjoint and uniformly positive definite. Then there exists ν̃ > 0 such 
that if ν < ν̃ and

Φ,Ψ ∈ L2−ν(R,H)

g := ∂tΦ + curlμ−1Ψ ∈ L2−ν(R,H)

h :=�0∂
−1
t Φ ∈ L2−ν(R,ker(curl0))

w :=�1∂
−1
t Ψ ∈ L2−ν(R,ker(curl)),

then the solution E, H of
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(
∂t

(
ε(∂t ) 0

0 μ

)
+
(

0 − curl
curl0 0

))(
E

H

)
=
(
Φ

Ψ

)
(3.12)

satisfies E, H ∈H 1−ν(R, H) and

‖E‖−ν,0 � ‖g‖−ν,0 + ‖h‖−ν,0

‖H‖−ν,0 � ‖g‖−ν,0 + ‖Φ‖−ν,0 + ‖w‖−ν,0

‖∂tE‖−ν,0 � ‖g‖−ν,0 + ‖Φ‖−ν,0

‖∂tH‖−ν,0 � ‖g‖−ν,0 + ‖Ψ ‖−ν,0.

(3.13)

Proof. We use projections similar to those in the proof of Theorem 3.10, now for the full system 
(3.12). Consider

H0 := ran(curl)= ker(curl0)
⊥ ι0 H

H ⊥
0 = ran(curl)⊥ = ker(curl0)

ι1 H

H1 := ran(curl0)= ker(curl)⊥
τ0 H

H ⊥
1 = ran(curl0)

⊥ = ker(curl)
τ1 H

(note that �0 = ι∗1, �1 = τ ∗
1 ) and observe that each of the maps τ ∗

1 curl0, ι∗1 curl, curl τ1, curl0 ι1
is zero on its corresponding domain. Now set for i, j ∈ {0, 1}

εij (∂t ) := ι∗i ε(∂t )ιj Ei := ι∗i E Φi := ι∗i Φ

μij := τ ∗
i μτj Hi := τ ∗

i H Ψi := τ ∗
i Ψ.

Then (3.12) can be written in the form

⎛⎜⎜⎝∂t
⎛⎜⎜⎝
ε00(∂t ) ε01(∂t ) 0 0
ε10(∂t ) ε11(∂t ) 0 0

0 0 μ00 μ01
0 0 μ10 μ11

⎞⎟⎟⎠+

⎛⎜⎜⎝
0 0 −ι∗0 curl τ0 0
0 0 0 0

τ ∗
0 curl0 ι0 0 0 0

0 0 0 0

⎞⎟⎟⎠
⎞⎟⎟⎠
⎛⎜⎜⎝
E0
E1
H0
H1

⎞⎟⎟⎠

=

⎛⎜⎜⎝
Φ0
Φ1
Ψ0
Ψ1

⎞⎟⎟⎠ . (3.14)

Here we note that the operator B := τ ∗
0 curl0 ι0 : dom(B) ⊆ H0 → H1 is injective, surjective, 

and closed, and thus continuously invertible by the closed graph theorem; the same is true for its 
adjoint B∗ = ι∗ curl τ0.
0
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Solving the second and fourth equation in (3.14) for

E1 = ε11(∂t )
−1∂−1

t Φ1 − ε11(∂t )
−1ε10(∂t )E0

H1 = μ−1
11 ∂

−1
t Ψ1 −μ−1

11 μ10H0,
(3.15)

we obtain the system (
∂t

(
ε̃(∂t ) 0

0 μ̃

)
+
(

0 −B∗
B 0

))(
E0
H0

)
=
(
Φ̃

Ψ̃

)
, (3.16)

where

ε̃(∂t ) := ε00(∂t )− ε01(∂t )ε11(∂t )
−1ε10(∂t )

μ̃ := μ00 −μ01μ
−1
11 μ10,

Φ̃ :=Φ0 − ε01(∂t )ε11(∂t )
−1Φ1

Ψ̃ := Ψ0 −μ01μ
−1
11 Ψ1.

Here ε11(∂t )
−1, ε̃(∂t ), μ

−1
11 , μ̃ are bounded in L2−ν for ν < ν1 by assumptions on ε, μ and 

Lemma 3.9. Moreover, ‖Φ̃‖−ν,0 � ‖Φ‖−ν,0 and ‖Ψ̃ ‖−ν,0 � ‖Ψ ‖−ν,0.
The assertions for E follow from Theorem 3.10 (the notation E0, E1 is the same as in 

the proof), since the data fulfills the necessary conditions. By Corollary 3.11 we even have 
E0, ∂tE0 ∈ L2−ν(R, H0) and CE0 ∈ L2−ν(R, H1) for C given by B∗μ−1B = C∗C, and the latter 
also implies BE0 ∈ L2−ν(R, H1) since μ is selfadjoint and boundedly invertible. Moreover, the 
estimates

‖E0‖−ν,0,‖∂tE0‖−ν,0,‖BE0‖−ν,0 � ‖g‖−ν,0

hold. Using (3.15) now provides

‖E1‖−ν,0 = ‖ε11(∂t )
−1∂−1

t Φ1 − ε11(∂t )
−1ε10(∂t )E0‖−ν,0 � ‖∂−1

t Φ1‖−ν,0 + ‖E0‖−ν,0

‖∂tE1‖−ν,0 = ‖ε11(∂t )
−1Φ1 − ε11(∂t )

−1ε10(∂t )∂tE0‖−ν,0 � ‖Φ1‖−ν,0 + ‖∂tE0‖−ν,0,

and overall

‖E‖−ν,0 � ‖g‖−ν,0 + ‖∂−1
t Φ1‖−ν,0 = ‖g‖−ν,0 + ‖h‖−ν,0

‖∂tE‖−ν,0 � ‖g‖−ν,0 + ‖Φ1‖−ν,0 � ‖g‖−ν,0 + ‖Φ‖−ν,0.
(3.17)

To obtain the assertions for H , we first take the first line in (3.16) and have

H0 = (B∗)−1(∂t ε̃(∂t )E0 − Φ̃
) ∈ L2−ν(R,H1),

by boundedness of (B∗)−1, with

‖H0‖−ν,0 � ‖∂tE0‖−ν,0 + ‖Φ̃‖−ν,0 � ‖g‖−ν,0 + ‖Φ‖−ν,0,

and the second line gives
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∂tH0 = −μ̃−1BE0 + μ̃−1Ψ̃ ∈ L2−ν(R,H1),

with

‖∂tH0‖−ν,0 � ‖BE0‖−ν,0 + ‖Ψ̃ ‖−ν,0 � ‖g‖−ν,0 + ‖Ψ ‖−ν,0.

The corresponding statement for H1 follows using (3.15), since

H1 = μ−1
11 ∂

−1
t Ψ1 −μ−1

11 μ10H0 ∈ L2−ν(R,H
⊥

1 )

∂tH1 = μ−1
11 Ψ1 −μ−1

11 μ10∂tH0 ∈ L2−ν(R,H
⊥

1 ),

with

‖H1‖−ν,0 � ‖H0‖−ν,0 + ‖∂−1
t Ψ1‖−ν,0

� ‖g‖−ν,0 + ‖Φ‖−ν,0 + ‖∂−1
t Ψ1‖−ν,0

‖∂tH1‖−ν,0 � ‖∂tH0‖−ν,0 + ‖Ψ1‖−ν,0

� ‖g‖−ν,0 + ‖Ψ ‖−ν,0.

We obtain

‖H‖−ν,0 � ‖g‖−ν,0 + ‖Φ‖−ν,0 + ‖∂−1
t Ψ1‖−ν,0

‖∂tH‖−ν,0 � ‖g‖−ν,0 + ‖Ψ ‖−ν,0.
(3.18)

Now (3.17) and (3.18) imply (3.13). �
3.2.1. Exponential stability in H 2 for materials constant on each �i

We now study exponential stability in the context of higher spatial regularity. This is motivated 
by the fact that the spaces Hk , k ≥ 2, enjoy the algebra property which is useful when polynomial 
nonlinearities are present. We will combine the assertion of Theorem 3.15 with the results in 
Section 2.5. Thus, we will only consider material laws that satisfy (M1). Let us introduce a more 
succinct notation for admissible data Φ, Ψ .

Definition 3.16. For ν > 0, the spaces V−ν and W−ν are defined by

Φ ∈ V−ν ⇐⇒

⎧⎪⎪⎨⎪⎪⎩
Φ ∈H 2−ν(R,H)∩L2−ν(R,H1 ∩H(div,�))

∂−1
t Φ ∈ L2−ν(R,H(div,�))

div ∂−1
t Φ ∈ L2−ν(R,H1)

Ψ ∈W−ν ⇐⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ψ ∈H 2−ν(R,H)∩L2−ν(R,H1 ∩H0(div,�))

∂−1
t Ψ ∈ L2−ν(R,H0(div,�))

div ∂−1
t Ψ ∈ L2−ν(R,H1)

curlμ−1Ψ ∈H 1 (R,H)
−ν
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and are equipped with the norms

‖Φ‖V−ν
= ‖Φ‖−ν,1 +

∑
j=1,2

‖∂jt Φ‖−ν,0 + ‖�0∂
−1
t Φ‖−ν,0 + ‖div ∂−1

t Φ‖−ν,1

‖Ψ ‖W−ν
= ‖Ψ ‖−ν,1 +

∑
j=1,2

‖∂jt Ψ ‖−ν,0 + ‖�1∂
−1
t Ψ ‖−ν,0 + ‖div ∂−1

t Ψ ‖−ν,1

+ ‖curlμ−1∂tΨ ‖−ν,0.

Note that the conditions �0∂
−1
t Φ ∈ L2−ν(R, ker(curl0)) and �1∂

−1
t Ψ ∈ L2−ν(R, ker(curl)) of 

Theorem 3.15 are indeed fulfilled if Φ ∈ V−ν , Ψ ∈W−ν .

Theorem 3.17 (Exponential stability of the linear Maxwell equations in H 2). Let � =�1 � � �
�2 be a bounded Lipschitz domain satisfying the regularity assumptions of Proposition 2.21 with 
k = 2. Let ε(∂t ), μ be of the form in (M1) and let ε(∂t ) satisfy (M2) and (M3) with some ν1 > 0. 
Under the assumptions on Φ, Ψ of Theorem 2.27, suppose in addition for ν < ν1 that Φ ∈ V−ν , 
Ψ ∈W−ν and

N ∈ L2−ν(R,H2) with ∂
j
t N ∈ L2−ν(R,H) for all j ∈ {−1,0,1,2}.

Then there exists ν̃ ∈ (0, ν1] such that the solution (E, H) of the system

(
∂t

(
ε(∂t ) 0

0 μ

)
+
(

0 − curl
curl0 0

))(
E

H

)
=
(
Φ −N

Ψ

)

fulfills E, H ∈ L2−ν(R, H2) for 0 < ν < ν̃ and

‖E‖−ν,2,‖H‖−ν,2 � ‖Φ‖V−ν
+ ‖Ψ ‖W−ν

+ ‖N‖−ν,2 +
2∑

j=−1

‖∂jt N‖−ν,0. (3.19)

Proof. The claim follows from similar estimates as in the proof of Theorem 2.27. Let 0 < ν < ν̃. 
Then, we have (2.40) with 	 = −ν, i.e.,

‖E‖−ν,2 �
(
1 + sup

Re z>−ν1

‖ε(z)−1‖)(‖E‖−ν,0 + ‖curl0 E‖−ν,1 + ‖div ε(∂t )E‖−ν,1 + ‖N‖−ν,2
)

‖H‖−ν,2 �
(
1 + ‖μ−1‖)(‖H‖−ν,0 + ‖curlH‖−ν,1 + ‖divμH‖−ν,1

)
.

(3.20)
We will estimate the norms on the right-hand side recursively.

By assumption on N and since Φ ∈ V−ν , Ψ ∈ W−ν , Theorem 3.15 applies (with Φ replaced 
by Φ − N ) and yields E, ∂tE, H, ∂tH ∈ L2−ν(R, H). Moreover, the additional assumptions on 
the regularity in time of the data imply that Theorem 3.15 can be applied once more, with 
∂tΦ, ∂tN, ∂tΨ instead of Φ, N, Ψ , yielding ∂tE, ∂tH, ∂2

t E, ∂
2
t H ∈ L2−ν(R, H). From (3.13) we 

obtain the following estimates
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‖E‖−ν,0 � ‖∂t (Φ −N)+ curlμ−1Ψ ‖−ν,0 + ‖�0∂
−1
t (Φ −N)‖−ν,0

‖H‖−ν,0 � ‖∂t (Φ −N)+ curlμ−1Ψ ‖−ν,0 + ‖Φ −N‖−ν,0 + ‖�1∂
−1
t Ψ ‖−ν,0

‖∂tE‖−ν,0 � ‖∂t (Φ −N)+ curlμ−1Ψ ‖−ν,0 + ‖Φ −N‖−ν,0

‖∂tH‖−ν,0 � ‖∂t (Φ −N)+ curlμ−1Ψ ‖−ν,0 + ‖Ψ ‖−ν,0

‖∂2
t E‖−ν,0 � ‖∂2

t (Φ −N)+ curlμ−1∂tΨ ‖−ν,0 + ‖∂t (Φ −N)‖−ν,0

‖∂2
t H‖−ν,0 � ‖∂2

t (Φ −N)+ curlμ−1∂tΨ ‖−ν,0 + ‖∂tΨ ‖−ν,0.

Collecting all the above terms, we observe that

2∑
j=0

(‖∂jt E‖−ν,0 + ‖∂jt H‖−ν,0
)
� ‖Φ‖V−ν

+ ‖Ψ ‖W−ν
+

2∑
j=−1

‖∂jt N‖−ν,0. (3.21)

Next, using the identities in the Maxwell system and Propositions 2.21 and 2.24, we have

‖curl0 E‖−ν,1 = ‖−∂tμH +Ψ ‖−ν,1

� ‖∂tH‖−ν,0 + ‖curl ∂tH‖−ν,0 + ‖div ∂tμH‖−ν,0 + ‖Ψ ‖−ν,1

� ‖∂tH‖−ν,0 + ‖ε(∂t )∂2
t E − ∂t (Φ −N)‖−ν,0 + ‖divΨ ‖−ν,0 + ‖Ψ ‖−ν,1

� ‖∂tH‖−ν,0 + ‖∂2
t E‖−ν,0 + ‖∂tΦ‖−ν,0 + ‖∂tN‖−ν,0 + ‖Ψ ‖−ν,1

‖div ∂t ε(∂t )E‖−ν,1 � ‖div(Φ −N)‖−ν,1

� ‖divΦ‖−ν,1 + ‖N‖−ν,2

‖curlH‖−ν,1 = ‖∂t ε(∂t )E −Φ +N‖−ν,1

� ‖ε(∂t )∂tE‖−ν,1 + ‖Φ‖−ν,1 + ‖N‖−ν,1

� ‖∂tE‖−ν,1 + ‖Φ‖−ν,1 + ‖N‖−ν,1

� ‖∂tE‖−ν,0 + ‖curl0 ∂tE‖−ν,0 + ‖div ε(∂t )∂tE‖−ν,0 + ‖Φ‖−ν,1 + ‖N‖−ν,1

� ‖∂tE‖−ν,0 + ‖−∂2
t μH + ∂tΨ ‖−ν,0 + ‖div(Φ −N)‖−ν,0 + ‖Φ‖−ν,1

+ ‖N‖−ν,1

� ‖∂tE‖−ν,0 + ‖∂2
t H‖−ν,0 + ‖∂tΨ ‖−ν,0 + ‖Φ‖−ν,1 + ‖N‖−ν,1

‖divμH‖−ν,1 � ‖div ∂−1
t Ψ ‖−ν,1.

Together with (3.21), we see that all terms can be controlled by the right-hand side of (3.19). The 
claim now follows with (3.20). �

Now we can formulate an exponential stability result in the nonlinear H 2-setting. We employ 
a fixed-point argument in L2 (R, H2).
−ν
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Theorem 3.18 (Small solutions of the nonlinear system in H 2). Let �, ε, μ, ν̃ be given as in 
Theorem 3.17 and impose the regularity conditions of Theorem 2.27 on the data Φ, Ψ . Suppose 
now that the map Pnl is such that for 0 < ν < ν̃ and for all j ∈ {0, 1, 2, 3},

∂
j
t Pnl : L2−ν(R,H2)→ L2−ν(R,H2)

are causal and satisfy the local Lipschitz estimates

‖∂jt Pnl(u)− ∂
j
t Pnl(v)‖−ν,2 ≤ C

(‖u‖−ν,2 + ‖v‖−ν,2
)α‖u− v‖−ν,2 (3.22)

for some α, C > 0 and all u, v ∈ L2−ν(R, H2). Then there exist ε0, c0 > 0 such that for all ε ∈
(0, ε0], ν < ν̃, the following holds: If Φ ∈ V−ν , Ψ ∈ W−ν with ‖Φ‖V−ν

, ‖Ψ ‖W−ν
< c0ε, then 

the nonlinear Maxwell system(
∂t

(
ε(∂t ) 0

0 μ

)
+
(

0 − curl
curl0 0

))(
E

H

)
=
(
Φ − ∂tPnl(E)

Ψ

)
admits a unique solution E, H ∈ L2−ν(R, H2) with ‖E‖−ν,2, ‖H‖−ν,2 ≤ ε.

Proof. Define the solution map S by

S(u) :=
(
∂t

(
ε(∂t ) 0

0 μ

)
+
(

0 − curl
curl0 0

))−1(
Φ − ∂tPnl(u)

Ψ

)
,

then by Theorem 3.17, for ν < ν̃ and u, v ∈ L2−ν(R, H2),

‖S(u)‖−ν,2 � ‖Φ‖V−ν
+ ‖Ψ ‖W−ν

+
3∑

j=0

‖∂jt Pnl(u)‖−ν,2

� ‖Φ‖V−ν
+ ‖Ψ ‖W−ν

+ ‖u‖1+α
−ν,2

and

‖S(u)− S(v)‖−ν,2 �
3∑

j=0

‖∂jt Pnl(u)− ∂
j
t Pnl(v)‖−ν,2

�
(‖u‖−ν,2 + ‖v‖−ν,2

)α‖u− v‖−ν,2.

Thus, with the projection π1(E, H) :=E, the map π1S is a contraction on the ball Bν
ε (R, H2) :=

{u ∈ L2−ν(R, H2) : ‖u‖−ν,2 ≤ ε} for small ε, ν > 0, if ‖Φ‖V−ν
, ‖Ψ ‖W−ν

< c0ε for small c0. �
The above result applies in particular to the fully nonlocal nonlinearities in Example 3.14 (or 

the local H2-version in Example 2.31) after imposing suitable regularity on the spatial kernel �
as well as the temporal kernel κ . We provide here an additional class of admissible nonlinearities.
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Example 3.19. Suppose each F ∈ {∂jt Pnl : j ∈ {0, 1, 2, 3}} is of the form

F(E)=
∫
R

κ(· − s) q(E(s))ds

with κ ∈ L2−νκ
(R, R3×3), suppκ ⊆ [0, ∞), and νκ > 0, and q : H2 →H2 is such that

‖q(u)− q(v)‖H2 ≤ C
(‖u‖H2 + ‖v‖H2

)‖u− v‖H2 (3.23)

for all u, v ∈ H2 (for instance if q is given by a bilinear map q(2) : R3 × R3 → R3 via q(u) =
q(2)(u, u)). Then, by an analogous estimate to that in (2.13) we can show that F fulfills

‖F(u)− F(v)‖−ν,2 ≤ √
2C‖κ‖L2−νκ

(‖u‖−ν,2 + ‖v‖−ν,2
)‖u− v‖−ν,2

for u, v ∈ L2−ν(R, H2), for small ν > 0. Indeed, take ν ∈ (0, νκ ] and let u, v ∈ L2−ν(R, H2) with 
suppu, suppv ⊆ [0, ∞). Then we have

∫
R

∥∥∥∥∫
R

κ(t − s)
(
q(u(s))− q(v(s))

)
ds

∥∥∥∥2

H2
e2νt dt

≤
∫
R

(∫
R

‖κ(t − s)‖∥∥q(u(s))− q(v(s))
∥∥
H2 ds

)2

e2νt dt

≤ C2
∫
R

(∫
R

‖κ(t − s)‖ (‖u(s)‖H2 + ‖v(s)‖H2

)
e−νs · ‖u(s)− v(s)‖H2e

νs ds

)2

e2νt dt

≤ C2‖u− v‖2−ν,2

∫
R

∫
R

‖κ(t − s)‖2e2νκ (t−s) e2(ν−νκ )(t−s)︸ ︷︷ ︸
≤1

dt
(‖u(s)‖H2 + ‖v(s)‖H2

)2 ds

≤ 2C2‖κ‖2
L2−νκ

(‖u‖2
0,2 + ‖v‖2

0,2

)‖u− v‖2−ν,2

≤ 2C2‖κ‖2
L2−νκ

(‖u‖−ν,2 + ‖v‖−ν,2
)2 ‖u− v‖2−ν,2

making repeated use of the Cauchy–Schwarz inequality and of ‖u‖0,2 ≤ ‖u‖−ν,2 for suppu ⊆
[0, ∞).

It appears that this estimate cannot be generalized to the case when

‖q(u)− q(v)‖H2 ≤ C
(‖u‖H2 + ‖v‖H2

)α‖u− v‖H2

with α > 1, like the k-linear (k ≥ 2) map q considered at the end of Example 2.15.
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4. Closing remarks

4.1. Materials with conductivity

The established stability results are based on Theorem 3.3. Alternatively, one can impose a 
stricter material damping in the form of a uniformly positive conductivity term, cf. [12]. We make 
use of the following criterion.

Proposition 4.1 ([28, Corollary 2.2.4]). Let M be a material law of the form M(z) = M0(z) +
z−1M1(z) with M0, M1 : dom(M) ⊆ C → B(X) analytic and bounded. Assume there exist 
ν0, c > 0 such that CRe>−ν0 � dom(M) is discrete and

∀z ∈ dom(M)∩CRe>−ν0 : Re zM(z)≥ c.

Then there exists d > 0 such that the evolutionary problem (3.4) is well-posed and exponentially 
stable.

Consider the following linear Maxwell system(
∂t

(
ε(∂t ) 0

0 μ

)
+
(
σ 0
0 0

)
+
(

0 − curl
curl0 0

))(
E

H

)
=
(
Φ

Ψ

)
,

where the conductivity σ ∈ B(H) is selfadjoint and uniformly positive definite with σ ≥ cσ > 0. 
For ε(∂t ) we assume that the following conditions hold.

(M4) ε : dom(ε) ⊆ C → B(H) is holomorphic and uniformly bounded. Moreover, there exists 
ν0, c > 0 such that CRe>−ν0 � dom(ε) is discrete and

Re ε(z)≥ c > 0, Re zε(z)+ σ ≥ c > 0

for all z ∈CRe>−ν0 ∩ dom(ε).

Thus, (M4) assures that the material law M given by

M(z) := ε(z)+ z−1σ

satisfies

Re z≥ −ν0 =⇒ Re zM(z)≥ c. (4.1)

Now we want to reiterate the proof of Theorem 3.10 with the material law M(∂t) instead of 
ε(∂t ) to obtain E ∈ L2−ν(R, H) for some ν > 0. To this end, analogously to (3.8), we derive the 
second-order system

(∂2
t M(∂t )+ curlμ−1 curl0)E = g

and write it as
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(
∂2
t

(
M00(∂t ) M01(∂t )

M10(∂t ) M11(∂t )

)
+
(
ι∗0 curlμ−1 curl0 ι0 0

0 0

))(
E0
E1

)
=
(
g0
g1

)
, (4.2)

where Mij (∂t ) = ι∗i M(∂t )ιj (again ι0 = ιran(curl), ι1 = ιker(curl0)). We now claim that the map

z 	→ zM01(z)(zM11(z))
−1 = (zε01(z)+ σ01)(zε11(z)+ σ11)

−1

(which is well-defined pointwise by RezM(z) ≥ c > 0 and Lemma 3.9) is bounded on CRe>−ν0 . 
To see this, write for r > 0

zM01(z)(zM11(z))
−1 = ε01(z)(ε11(z)+ z−1σ11)

−11{|z|>r}(z)

+ zε01(z)(zε11(z)+ σ11)
−11{|z|≤r}(z)

+ σ01(zε11(z)+ σ11)
−1

and observe that, upon choosing r large enough and using Reε(z) ≥ c > 0 and again Lemma 3.9, 
all factors are bounded on CRe>−ν0 ∩ dom(ε). Hence the claim follows by analytic continuation. 
Consequently, ∂tM01(∂t )(∂tM11(∂t ))

−1 maps L2−ν(R, H1) into L2−ν(R, H0) for each ν < ν0, 
and (4.2) can be transformed into

(
∂t

(
∂t
(
M00(∂t )− ∂tM01(∂t )(∂tM11(∂t ))

−1M10(∂t )
)

0
∂tM10(∂t ) ∂tM11(∂t )

)

+
(
ι∗0 curlμ−1 curl0 ι0 0

0 0

))(
E0
E1

)
=
(
g0 − ∂tM01(∂t )(∂tM11(∂t ))

−1g1
g1

)
.

Now the system for E0 in the first line satisfies the conditions for exponential stability of Propo-
sition 4.1, and the rest follows analogously as in the proof of Theorem 3.10. We conclude that 
Theorem 3.10 holds for the Maxwell system with conductivity, with assumption (M4) replacing 
(M2) and (M3) if g0 − ∂tM01(∂t )(∂tM11(∂t ))

−1g1 ∈ L2−ν(R, H0). A similar conclusion can be 
drawn for Theorem 3.15.

4.2. Removal of the auxiliary terms �0∂
−1
t Φ, �1∂

−1
t Ψ

Under alternative (and in view of (2.28) rather natural) assumptions on the data, the depen-
dence on the anti-derivatives �0∂

−1
t Φ, �1∂

−1
t Ψ in Theorem 2.27 and in the theorems in §3.1, 

§3.2 can be removed. Let � be a simply connected Lipschitz domain with connected comple-
ment. Then the identities

ker(div)= ran(curl)= ker(curl0)
⊥, ker(div0)= ran(curl0)= ker(curl)⊥

hold (see [14, Lemma 5] or [20, Prop 6.2]). Consequently, suppose that Φ ∈ ker(div), Ψ ∈
ker(div0) are divergence-free. Then the identities above imply �0Φ = 0, �1Ψ = 0 as well as 
�0∂

−1
t Φ = 0, �1∂

−1
t Ψ = 0. Thus, the conditions
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Φ ∈ L2−ν(R,ker(div))

Ψ ∈ L2−ν(R,ker(div0))

∂tΦ + curlμ−1Ψ ∈ L2−ν(R,H)

are sufficient to obtain E, H ∈ L2−ν(R, H) via Theorem 3.10 or Theorem 3.15. For Theorem 3.17
and Theorem 3.18, the prerequisite can be changed from Φ ∈ V−ν , Ψ ∈ W−ν (cf. Definition 3.16) 
to

Φ ∈H 2−ν(R,H)∩L2−ν(R,H1 ∩ ker(div))

Ψ ∈H 2−ν(R,H)∩L2−ν(R,H1 ∩ ker(div0))

curlμ−1Ψ ∈H 1−ν(R,H).
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Appendix A. A class of permittivities of Drude–Lorentz-type and applications

Here we check the accretivity conditions in Picard’s theorem and conditions (M2) and (M3)
for a particular class of scalar permittivities.

A.1. Accretivity of the material law on a right half-plane

The Drude–Lorentz model in its general form is given by

χ̃DL(ω)=
n∑

j=1

αj

ω2
0,j −ω2 − 2iγjω

, resp. χ̃DL(iz)=
n∑

j=1

αj

ω2
0,j + z2 + 2γj z

,

where n ∈ N , ω0,j ≥ 0, αj , γj > 0. Recall that χ̃(iz) = (2π)−1/2
∫
χ(t)e−zt dt denotes the 

Laplace transform. As such, we note that if ω0,j > γj , the above is the Laplace transform of 
a sum of exponentially damped sine functions:

χDL(t)= θ(t)

n∑
j=1

aj e
−γj t sin(bj t), aj = αj

bj
, bj = (ω2

0,j − γ 2
j )

1/2,

where θ is the Heaviside function. We take for simplicity n = 1 and consider the material law χ
given by
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χ(z)= α

ω2
0 + z2 + 2γ z

, where ω0, α, γ > 0. (A.1)

The zeros of the denominator are

z=
⎧⎨⎩−γ ± i

√
ω2

0 − γ 2, if ω0 > γ

−γ ±
√
γ 2 −ω2

0, if ω0 ≤ γ ,

and are all contained in CRe<0. Writing z= ν + it , we compute

Re
(
(ν + it) χ(ν + it)

)= Re
α(ν + it)

ω2
0 + (ν + it)2 + 2γ (ν + it)

= Re
α(ν + it)

(ω2
0 + ν2 − t2 + 2γ ν)+ 2i(νt + γ t)

= αν(ω2
0 + ν2 − t2 + 2γ ν)+ 2αt(νt + γ t)(

ω2
0 + ν2 − t2 + 2γ ν

)2 + 4
(
νt + γ t

)2
= αν(ω2

0 + ν2 + t2 + 2γ ν)+ 2αγ t2(
ω2

0 + ν2 − t2 + 2γ ν
)2 + 4

(
νt + γ t

)2 .
With M(z) := ε0 + χ(z), ε0 > 0, we thus have

Re
(
(ν + it)M(ν + it)

)= ε0ν + αν(ω2
0 + ν2 + t2 + 2γ ν)+ 2αγ t2(

ω2
0 + ν2 − t2 + 2γ ν

)2 + 4
(
νt + γ t

)2 .
Because the second term on the right is positive, bounded, and vanishes as |t | → ∞, this shows 
Re zM(z) ≥ cRe z for some c > 0 if 	0 > 0 and z ∈ CRe>	0 . In particular, M(∂t ) fulfills the 
requirements of Theorem 2.5 and Proposition 2.12.

In contrast, strict accretivity of zM(z) on a half-plane CRe>−ν0 (even outside of a disk B[0, δ], 
cf. assumption (M2)) cannot hold for ν0 > 0.

A.2. Analytic correction to the material law

We have seen that the linear Maxwell system with the “standard” Drude–Lorentz suscepti-
bility does not fulfill the criteria for exponential stability. However, these are still global criteria 
that assure exponential decay of the solution for rather general right-hand sides Φ, Ψ ∈ L2−ν . If 
the Fourier–Laplace transform of the right-hand side is localized around a certain “frequency” 
z= z0 ∈C, we can argue that the exact form of the solution operator plays no role for large |z|.

To be specific, fix r � 1 and consider the following modified material law (for the case z0 =
0),

Mr(z) := ε0 + α

ω2 + z2 + 2γ z

(
1 + z

r

)
, with α,γ,ω0 > 0. (A.2)
0
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Clearly, Mr is bounded on a half-plane containing the imaginary axis. First we show that (M2)

is satisfied if r >
ω2

0
2γ is large enough.

Lemma A.1. Assume that 2γ r − ω2
0 > 0. Then Mr satisfies (M2), i.e., for all δ > 0 there exist 

ν1 > 0 and c > 0 such that

∀z ∈ CRe>−ν1 �B[0, δ] : Re zMr(z)≥ c. (A.3)

Proof. We denote g(ν, t) := Re (ν + it)Mr(ν + it) − ε0ν and find that g is explicitly given by

g(ν, t)= α

r

νω2
0r + (

2γ r+ω2
0

)
ν2 + (r +2γ ) ν3 + (

(r +2γ ) ν+2ν2 +2γ r −ω2
0

)
t2 +ν4 + t4(

ω2
0 + ν2 − t2 + 2γ ν

)2 + (2ν + 2γ )2 t2
.

Define γ0 > 0 by γ0 = γ if ω0 > γ and γ0 = γ − (γ 2 − ω2
0)

1/2 if ω0 ≤ γ . Then g is continuous 
on R>−γ0 × R, since the zeros of the denominator lie outside this set. Also, g is positive on 
R≥0 × (R � {0}), since it is a sum of positive terms; here the assumption 2γ r −ω2

0 > 0 has been 
used. Moreover, due to limν→∞ g(ν, t) = lim|t |→∞ g(ν, t) = α

r
> 0, for all δ > 0 the map

ν 	→ inf
{t :ν2+t2>δ2}

g(ν, t) (ν ≥ 0)

is even bounded from below by a positive constant. By continuity, this remains true for ν < 0
small enough, i.e., there are ν0, c0 > 0 such that g(ν, t) ≥ c0 for all ν > −ν0. Now choose 0 <
ν1 < min{ν0, c0ε

−1
0 }, then

Re (ν + it)Mr(ν + it)= g(ν, t)+ ε0ν ≥ c0 − ε0ν1 =: c > 0

for all ν >−ν1. �
Let us now consider condition (M3) for Mr , i.e.,

∃c > 0 ∀z ∈ CRe>−ν2 : ReMr(z)≥ c (A.4)

for some ν2 ∈ (0, ν1]. A look at

ReMr(ν + it)− ε0 = α

r

(2γ + ν − r)t2 +ω2
0r + (2γ r +ω2

0)ν + (2γ + r)ν2 + ν3(
ω2

0 + ν2 − t2 + 2νγ
)2 + 4

(
ν + γ

)2
shows that this term is overall bounded and vanishes as |ν + it | → ∞. By a suitable choice of 
parameters ω0, γ, α > 0 (small α, depending on γ, ω0), we can ensure ReMr(ν + it) ≥ c for 
some c > 0 and small ν < 0, providing (A.4).

The modified material law (A.2) thereby fulfills the conditions necessary for Theorem 3.10 to 
obtain exponential stability for the modified linearized Maxwell system(

∂t

(
Mr(∂t ) 0

0 μ

)
+
(

0 − curl
curl 0

))(
E
)

=
(
Φ
)
. (A.5)
0 H Ψ
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Remark A.2.

(i) Multiplying χ(z) by the factor (1 + z
r
) is the same as adding the following term to the 

convolution kernel χDL(t):

α

r
θ(t)e−γ t

(
cos(bt)− γ

b
sin(bt)

)
, b = (ω2

0 − γ 2)1/2.

A similar modification was employed in [25] for nonlinear Maxwell equations in an optical 
fiber.

(ii) In a similar fashion we could devise a modified material law of the form

Mr(z)= ε0 +
n∑

j=1

αj

ω2
0,j + z2 + 2γj z

(
1 + z− z0

r

)
,

which is localized around z0. In this case the interplay between the parameters ω0,j , γj , αj , 
and z0 becomes somewhat more delicate, but (A.3) and (A.4) are still satisfied for small αj .

A.3. Well-posedness and exponential stability of linear and nonlinear systems

In Tables 1 and 2 we collect the various examples given throughout the paper into an overview 
of different Maxwell systems, sorted by the properties (defined below) proved in the paper. Here
DL denotes the Drude–Lorentz permittivity model in (A.1) and mod-DL that in (A.2).

Table 1
Well-posedness and exponential stability of the linear Maxwell system (2.9) depending on 
the type of permittivity and the domain. Here “bw-Lipschitz” stands for a bounded, weak 
Lipschitz domain, while “smooth” refers to a bounded domain satisfying the conditions 
of Proposition 2.21.

� arbitrary � bw-Lipschitz � smooth

DL (A.1) (WP0) (WP0) (WP0), (WP2)
mod-DL (A.2) (WP0) (WP0), (ES0) (WP0), (ES0), (WP2), (ES2)

Table 2
Well-posedness and exponential stability of the nonlinear Maxwell system (2.8) depending on the type of nonlinearity 
and the domain.

� arbitrary � bw-Lipschitz � smooth

Saturable (Ex. 2.11) (nl-WP0) (nl-WP0) (nl-WP0)

Fully nonlocal multilinear 
(Ex. 2.15, Ex. 3.14)

(nl-WPcut,0) (nl-WPcut,0), (nl-ES0) (nl-WPcut,0), (nl-ES0), 
(nl-WPcut,2), (nl-EScut,2)

Multilinear algebraic spatial map q

(Ex. 2.31)
(nl-WPcut,2), (nl-ES2)

Quadratic, single-variable κ
(Ex. 3.19)

(nl-ES2)
74



T. Dohnal, M. Ionescu-Tira and M. Waurick Journal of Differential Equations 383 (2024) 24–77
In the linear case:

(WP0) Well-posedness of the linear system in the spaces L2
	(R, H) (	 > 	0 for some 	0 > 0) 

(via direct application of Picard’s theorem, see Example 2.9)
(WP2) H2-regularity of the linear system (i.e., well-posedness in the spaces L2

	(R, H2), 	 >

	0 > 0) (Theorem 2.27).
(ES0) Exponential stability of the linear system in L2−ν(R, H) (0 < ν < ν0) (Theorem 3.10

resp. Theorem 3.15).
(ES2) Exponential stability of the linear system in L2−ν(R, H2) (0 < ν < ν0) (Theorem 3.17).

In the nonlinear case:

(nl-WP0) Well-posedness of the nonlinear system (with DL or mod-DL) in the spaces L2
	(R, H)

(	 > 	0 ≥ 0) (Picard’s theorem and fixed-point argument)
(nl-WPcut,0) L2

	(R, H)-solutions (	 > 	0 ≥ 0) of the nonlinear system with time-cutoff (with
DL or mod-DL) (Proposition 2.16).

(nl-WPcut,2) L2
	(R, H2)-solutions (	 > 	0 > 0) of the nonlinear system with time-cutoff (with

DL or mod-DL) (Corollary 2.30).
(nl-ES0) Small solutions of the nonlinear system (only with mod-DL) in L2−ν(R, H) (0 < ν <

ν0) (Theorem 3.13 resp. Theorem 3.15 together with fixed-point argument).
(nl-ES2) Small solutions of the nonlinear system (only with mod-DL) in L2−ν(R, H2) (0 < ν <

ν0) (Theorem 3.18).

Remark A.3. We recapitulate that the interface � is arbitrary except for the higher regularity 
results in the last column in Tables 1 and 2. Here a smoothness assumption on � is required in 
Proposition 2.21.

Appendix B. Note on closedness of the range of curl

The following compactness result (see [16]) and the Lemma below are instrumental for the 
proofs of Theorem 3.10 and Theorem 3.15.

Theorem B.1 (Picard–Weber–Weck selection theorem). Let � ⊂ R3 be a bounded weak Lips-
chitz domain. Then the embeddings

H(curl,�)∩H0(div,�) ↪→ L2(�)3 and H0(curl,�)∩H(div,�) ↪→ L2(�)3

are compact.

Lemma B.2. Let � ⊂R3 be a bounded weak Lipschitz domain. Then the ranges

ran(curl)= {curlu : u ∈H(curl,�)} and ran(curl0)= {curlu : u ∈H0(curl,�)}

are closed subspaces of L2(�)3.
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Proof. In the following we establish the Poincaré-type estimates

∃C > 0 ∀φ ∈ dom(curl)∩ ker(curl)⊥ : ‖φ‖L2 ≤ C‖curlφ‖L2

∃C > 0 ∀φ ∈ dom(curl0)∩ ker(curl0)
⊥ : ‖φ‖L2 ≤ C‖curl0 φ‖L2 .

(B.1)

These estimates are sufficient (even equivalent, see [29]) for the closedness of the ranges. In-
deed, let (φn)n be a sequence in dom(curl) = H(curl, �) such that curlφn → ψ for some 
ψ ∈ L2(�)3. Decompose φn = φn,0 + φn,1, where φn,0 ∈ ker(curl) and φn,1 ∈ ker(curl)⊥. Since 
φn,0 ∈ ker(curl) ⊆ dom(curl) and φn ∈ dom(curl), it follows that φn,1 ∈ dom(curl). Using esti-
mate (B.1), we infer for n, m ∈N:

‖φn,1 − φm,1‖L2 ≤ C‖curlφn,1 − curlφm,1‖L2 = C‖curlφn − curlφm‖L2,

which yields that (φn,1) is a Cauchy sequence in dom(curl). Since curl is a closed operator, there 
exist φ, ψ1 such that

φn,1 → φ, curlφn,1 →ψ1 = curlφ in L2(�)3.

As curlφn,1 = curlφn, it follows that ψ = ψ1 = curlφ, proving the closedness of ran(curl). The 
argument for ran(curl0) is similar.

Let us now show (B.1). Again, we only focus on curl . Assume that (B.1) is not true. Then for 
each n ∈N we find φ̃n ∈ dom(curl) ∩ ker(curl)⊥ such that ‖φ̃n‖L2 > n‖curl φ̃n‖L2 . In particular, 
φ̃n �= 0. For n ∈N we let φn := ‖φ̃n‖−1

L2 φ̃n. Then

‖φn‖L2 = 1 and 1 > n‖curlφn‖L2 .

Thus, (φn)n is a bounded sequence in dom(curl) ∩ ker(curl)⊥ ⊆ H(curl, �). Without loss of 
generality (by possibly choosing a subsequence) we may assume that (φn)n weakly converges in 
dom(curl) ∩ ker(curl)⊥, i.e.,

φn ⇀ φ, curlφn ⇀ curlφ

for some φ ∈ dom(curl) ∩ ker(curl)⊥. Next, since

ker(curl)⊥ = ran(curl∗)= ran(curl0)⊆ ker(div0)⊆ dom(div0)=H0(div,�),

we infer by the Picard–Weber–Weck selection theorem that φn → φ in L2(�)3. In particular, 
1 = ‖φn‖L2 → ‖φ‖L2 = 1. Finally,

‖curlφn‖L2 <
1

n
→ 0

and therefore

‖curlφ‖L2 ≤ lim inf
n→∞ ‖curlφn‖L2 = 0.

Thus, φ ∈ ker(curl). Since φ ∈ ker(curl)⊥, we obtain φ = 0, contradicting ‖φ‖L2 = 1, which 
eventually proves (B.1). �
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