Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/115319
Titel: Urinary peptidomic liquid biopsy for non-invasive differential diagnosis of chronic kidney disease
Autor(en): Mavrogeorgis, Emmanouil
He, TianlinIn der Gemeinsamen Normdatei der DNB nachschlagen
Mischak, HaraldIn der Gemeinsamen Normdatei der DNB nachschlagen
Latosinska, AgnieszkaIn der Gemeinsamen Normdatei der DNB nachschlagen
Vlahou, AntoniaIn der Gemeinsamen Normdatei der DNB nachschlagen
Schanstra, Joost PeterIn der Gemeinsamen Normdatei der DNB nachschlagen
Catanese, LorenzoIn der Gemeinsamen Normdatei der DNB nachschlagen
Amann, KerstinIn der Gemeinsamen Normdatei der DNB nachschlagen
Huber, TobiasIn der Gemeinsamen Normdatei der DNB nachschlagen
Beige, Joachim
Rupprecht, Harald D.
Siwy, JustynaIn der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2023
Art: Artikel
Sprache: Englisch
Zusammenfassung: Background and hypothesis: Specific urinary peptides hold information on disease pathophysiology, which, in combination with artificial intelligence, could enable non-invasive assessment of chronic kidney disease (CKD) aetiology. Existing approaches are generally specific for the diagnosis of single aetiologies. We present the development of models able to simultaneously distinguish and spatially visualize multiple CKD aetiologies. Methods: The urinary peptide data of 1850 healthy control (HC) and CKD [diabetic kidney disease (DKD), immunoglobulin A nephropathy (IgAN) and vasculitis] participants were extracted from the Human Urinary Proteome Database. Uniform manifold approximation and projection (UMAP) coupled to a support vector machine algorithm was used to generate multi-peptide models to perform binary (DKD, HC) and multiclass (DKD, HC, IgAN, vasculitis) classifications. This pipeline was compared with the current state-of-the-art single-aetiology CKD urinary peptide models. Results: In an independent test set, the developed models achieved 90.35% and 70.13% overall predictive accuracies, respectively, for the binary and the multiclass classifications. Omitting the UMAP step led to improved predictive accuracies (96.14% and 85.06%, respectively). As expected, the HC class was distinguished with the highest accuracy. The different classes displayed a tendency to form distinct clusters in the 3D space based on their disease state. Conclusion: Urinary peptide data present an effective basis for CKD aetiology differentiation using machine learning models. Although adding the UMAP step to the models did not improve prediction accuracy, it may provide a unique visualization advantage. Additional studies are warranted to further validate the pipeline's clinical potential as well as to expand it to other CKD aetiologies and also other diseases.
URI: https://opendata.uni-halle.de//handle/1981185920/117273
http://dx.doi.org/10.25673/115319
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: Nephrology, dialysis, transplantation
Verlag: Oxford Univ. Press
Verlagsort: Oxford
Band: 39
Heft: 3
Originalveröffentlichung: 10.1093/ndt/gfad200
Seitenanfang: 453
Seitenende: 462
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
gfad200.pdf1.41 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen