Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/115245
Titel: Differentiating primary and secondary FSGS using non-invasive urine biomarkers
Autor(en): Catanese, LorenzoIn der Gemeinsamen Normdatei der DNB nachschlagen
Siwy, JustynaIn der Gemeinsamen Normdatei der DNB nachschlagen
Wendt, RalphIn der Gemeinsamen Normdatei der DNB nachschlagen
Amann, KerstinIn der Gemeinsamen Normdatei der DNB nachschlagen
Beige, Joachim
Hendry, Bruce
Mischak, HaraldIn der Gemeinsamen Normdatei der DNB nachschlagen
Mullen, William
Paterson, Ian
Schiffer, MarioIn der Gemeinsamen Normdatei der DNB nachschlagen
Wolf, Michael
Rupprecht, HaraldIn der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2024
Art: Artikel
Sprache: Englisch
Zusammenfassung: Background: Focal segmental glomerulosclerosis (FSGS) is divided into genetic, primary (p), uncertain cause, and secondary (s) forms. The subclasses differ in management and prognosis with differentiation often being challenging. We aimed to identify specific urine proteins/peptides discriminating between clinical and biopsy-proven pFSGS and sFSGS. Methods: Sixty-three urine samples were collected in two different centers (19 pFSGS and 44 sFSGS) prior to biopsy. Samples were analysed using capillary electrophoresis-coupled mass spectrometry. For biomarker definition, datasets of age-/sex-matched normal controls (NC, n = 98) and patients with other chronic kidney diseases (CKDs, n = 100) were extracted from the urinary proteome database. Independent specificity assessment was performed in additional data of NC (n = 110) and CKD (n = 170). Results: Proteomics data from patients with pFSGS were first compared to NC (n = 98). This resulted in 1179 biomarker (P < 0.05) candidates. Then, the pFSGS group was compared to sFSGS, and in a third step, pFSGS data were compared to data from different CKD etiologies (n = 100). Finally, 93 biomarkers were identified and combined in a classifier, pFSGS93. Total cross-validation of this classifier resulted in an area under the receiving operating curve of 0.95. The specificity investigated in an independent set of NC and CKD of other etiologies was 99.1% for NC and 94.7% for CKD, respectively. The defined biomarkers are largely fragments of different collagens (49%). Conclusion: A urine peptide-based classifier that selectively detects pFSGS could be developed. Specificity of 95%–99% could be assessed in independent samples. Sensitivity must be confirmed in independent cohorts before routine clinical application.
URI: https://opendata.uni-halle.de//handle/1981185920/117200
http://dx.doi.org/10.25673/115245
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: Clinical kidney journal
Verlag: Oxford Univ. Press
Verlagsort: Oxford
Band: 17
Heft: 2
Originalveröffentlichung: 10.1093/ckj/sfad296
Seitenanfang: 1
Seitenende: 14
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
sfad296.pdf1.6 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen