Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/114033
Titel: Towards Identifying GDPR-Critical Tasks in Textual Business Process Descriptions
Autor(en): Nake, Leonard
Kuehnel, Stephan
Bauer, Laura
Sackmann, Stefan
Erscheinungsdatum: 2023-09
Art: Conference Object
Sprache: Englisch
Herausgeber: Universitäts- und Landesbibliothek Sachsen-Anhalt
Schlagwörter: Legal Compliance
General Data Protection Regulation
GDPR
Business Process
Task Identification
Zusammenfassung: Complying with data protection regulations is an essential duty for organizations since violating them would lead to monetary penalties from authorities. In Europe, the General Data Protection Regulation (GDPR) defines personal data and requirements for dealing with this type of data. Hence, organizations must identify business activities that deal with personal data to establish measures to fulfill these requirements. Especially for large organizations, a manual identification can be labor-intensive and error-prone. However, textual business process descriptions, such as work instructions, provide valuable insights into the data used in organizations. Therefore, we propose a first approach to automatically identify GDPR-critical tasks in textual business process descriptions. More specifically, we use a supervised machine learning algorithm to automatically identify whether a task deals with personal data or not. A first evaluation of our approach with a dataset of 37 process descriptions containing 509 activities demonstrates that our approach generates satisfactory results.
URI: https://opendata.uni-halle.de//handle/1981185920/115989
http://dx.doi.org/10.25673/114033
DOI: 10.18420/inf2023_191
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International(CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
Sponsor/Geldgeber: The project on which this study is based was funded by the German Federal Ministry of Education and Research under grant number 16KIS1331. The responsibility for the content of this publication lies with the authors.
Enthalten in den Sammlungen:Lehrstuhl für Betriebliches Informationsmanagement

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Nake et al. 2023.pdf653.15 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen