Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.25673/114033
Titel: | Towards Identifying GDPR-Critical Tasks in Textual Business Process Descriptions |
Autor(en): | Nake, Leonard Kuehnel, Stephan Bauer, Laura Sackmann, Stefan |
Erscheinungsdatum: | 2023-09 |
Art: | Conference Object |
Sprache: | Englisch |
Herausgeber: | Universitäts- und Landesbibliothek Sachsen-Anhalt |
Schlagwörter: | Legal Compliance General Data Protection Regulation GDPR Business Process Task Identification |
Zusammenfassung: | Complying with data protection regulations is an essential duty for organizations since violating them would lead to monetary penalties from authorities. In Europe, the General Data Protection Regulation (GDPR) defines personal data and requirements for dealing with this type of data. Hence, organizations must identify business activities that deal with personal data to establish measures to fulfill these requirements. Especially for large organizations, a manual identification can be labor-intensive and error-prone. However, textual business process descriptions, such as work instructions, provide valuable insights into the data used in organizations. Therefore, we propose a first approach to automatically identify GDPR-critical tasks in textual business process descriptions. More specifically, we use a supervised machine learning algorithm to automatically identify whether a task deals with personal data or not. A first evaluation of our approach with a dataset of 37 process descriptions containing 509 activities demonstrates that our approach generates satisfactory results. |
URI: | https://opendata.uni-halle.de//handle/1981185920/115989 http://dx.doi.org/10.25673/114033 |
DOI: | 10.18420/inf2023_191 |
Open-Access: | Open-Access-Publikation |
Nutzungslizenz: | (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International |
Sponsor/Geldgeber: | The project on which this study is based was funded by the German Federal Ministry of Education and Research under grant number 16KIS1331. The responsibility for the content of this publication lies with the authors. |
Enthalten in den Sammlungen: | Lehrstuhl für Betriebliches Informationsmanagement |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
Nake et al. 2023.pdf | 653.15 kB | Adobe PDF | Öffnen/Anzeigen |