Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/113000
Titel: A data-driven-based wide-area protection scheme for fault detection using the limited measurements
Autor(en): Shazdeh, Sirwan
Shafiee, Qobad
Bevrani, HassanIn der Gemeinsamen Normdatei der DNB nachschlagen
Körperschaft: Hochschule Anhalt
Erscheinungsdatum: 2023
Sprache: Englisch
Schlagwörter: Fault Detection
Wide-Area Protection
Data-Driven Scheme
Zusammenfassung: This paper presents a novel and efficient approach for wide-area fault detection in microgrids, utilizing data-driven techniques based on voltage and current measurements. The proposed method offers both high speed and accuracy in detecting faults. The methodology consists of three key steps that collectively form a comprehensive protection scheme. Initially, the current trajectories obtained from the measurements are analyzed to determine the fault condition. This initial indicator serves as a valuable starting point for fault detection. In the second step, the impedance of the lines, including the considered area, is calculated for the fault detection. The change of the calculated impedances implies for the fault occurrence activating the third step. In the final step, an iterative process is followed to identify the faulted line. The proposed method provides a faster and more reliable fault detection mechanism, allowing for rapid response and mitigation of potential disruptions. The efficacy of the proposed method is validated on an 11-bus microgrid. The simulation investigations are conducted in MATLAB\SIMULINK environment.
URI: https://opendata.uni-halle.de//handle/1981185920/114957
http://dx.doi.org/10.25673/113000
http://dx.doi.org/10.25673/113000
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International(CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
Enthalten in den Sammlungen:International Conference on Applied Innovations in IT (ICAIIT)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
4_1_ICAIIT_Paper_2023(2)_Shazdeh_29-1.pdf1.48 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen