Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/112988
Titel: Inverse and Direct Maxflow Problem Study on the Free-Oriented ST-Planar Network Graph
Autor(en): Tikhonov, Victor
Nesterenko, Serhii
Taher, Abdullah
Tykhonova, Olena
Tsyra, Olexandra
Yavorska, Olha
Shulakova, Kateryna
Körperschaft: Hochschule Anhalt
Erscheinungsdatum: 2023
Sprache: Englisch
Schlagwörter: Telecommunication Network
Maximal Flow
Free Oriented Planar Graph
SDN
Zusammenfassung: The issues of data flow optimization in telecommunication networks are considered. The analyses of the problem state of art shows the primarily utilization of logistic Maxflow model on ST-planar directed network graph with predetermined fixed metric. Concluded, that conventional logistic Maxflow model is not adequate to modern telecoms with flexibly reconfigured channels. Introduced the concept of the free-oriented network graph as an enhanced math-model for digital flows simulation. The inverse and direct Maxflow tasks are formulated on the normalised free-oriented ST-planar network graph, and the properties of the graph obtained as functions of vertices number. The direct Maxflow task is studied in tensor form, and the algorithm of test-sequences generation for the inverse Maxflow task is constructed. The inverse Maxflow problem has been analyzed as a discrete optimization task on the Pontryagin maximum principle with two necessary extremum conditions. Related computation algorithm is built with polynomial complexity. Unlike the known approaches, proposed method is relevant to data flow optimization in the software defined networks with dynamically reconfigurable channels. Along with the maximal flow, the flow distribution over the network structure provided. The formalism of the direct Maxflow task can be used for testing the algorithms of inverse Maxflow task solutions, and generation the training sequences for machine learning in AI models
URI: https://opendata.uni-halle.de//handle/1981185920/114945
http://dx.doi.org/10.25673/112988
http://dx.doi.org/10.25673/112988
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International(CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
Enthalten in den Sammlungen:International Conference on Applied Innovations in IT (ICAIIT)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
1_1_ICAIIT_Paper_2023(2)_Tikhonov_15.pdf1.33 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen