Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/101651
Full metadata record
DC FieldValueLanguage
dc.contributor.refereeProf. Dr. Liebscher, Eckhard-
dc.contributor.refereeProf. Dr. Spillner, Andreas-
dc.contributor.authorTran, Hoai Viet-
dc.date.accessioned2023-03-31T09:13:43Z-
dc.date.available2023-03-31T09:13:43Z-
dc.date.issued2023-03-31-
dc.date.submitted2023-03-07-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/103598-
dc.identifier.urihttp://dx.doi.org/10.25673/101651-
dc.description.abstractAfter building the neural network, hyperparameters tuning is an important step in Machine Learning to improve the model performance or to customize model hyperparameters to better suit the dataset. There are different tools and packages that use grid or random search algorithms for hyperparameters optimization. But these algorithms do not indicate the importance of different hyperparameter combinations or the correlation between hyperparameters and the loss function. Deep learning models consist of multiple layers with fully-connected individual neurons that makes it complicated to understand why the model learns it that way. That is why finding hyperparameters importance is necessary to define which factors have positive or negative impacts on the model. A deep learning model in this project will take images from the camera in the simulator as input and predict steering values. The aim of this work is to optimize the hyperparameters tuning process of CNN model. Instead of choosing and combining randomly, different sets of hyperparameters are selected systematically through multivariate quadratic regression.eng
dc.language.isoeng-
dc.publisherHochschulbibliothek, Hochschule Merseburg-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectautonomous drivingeng
dc.subjectassistance systemseng
dc.subjectConvolutional Neural Networkseng
dc.subjectdeep learning modeleng
dc.subjecthyperparameters tuning process of CNN modeleng
dc.subject.ddcDDC::6** Technik, Medizin, angewandte Wissenschaften::62* Ingenieurwissenschaften::620 Ingenieurwissenschaften und zugeordnete Tätigkeiten-
dc.titleComparison of assistance systems for autonomous driving using Convolutional Neural Networkseng
dc.typeMaster Thesis-
dc.identifier.urnurn:nbn:de:gbv:542-1981185920-1035985-
local.versionTypesubmittedVersion-
local.publisher.universityOrInstitutionHochschule Merseburg-
local.openaccesstrue-
local.accessrights.dnbfree-
Appears in Collections:Ingenieur- und Naturwissenschaften

Files in This Item:
File Description SizeFormat 
TranHoaiViet_Comparison of assistance systems for autonomous driving.pdf8.34 MBAdobe PDFThumbnail
View/Open