
University of Applied Science Merseburg

Department of Engineering and Natural Sciences

Comparison of assistance systems for autonomous driving
using Convolutional Neural Networks

A master thesis submitted for the degree of

Master of Engineering
in Computer Science and Communications System

Tran, Hoai Viet

Advisor:
Prof. Dr. Eckhard Liebscher
Prof. Dr. Andreas Spillner

Merseburg, October 2022

Abstract
After building the neural network, hyperparameters tuning is an important step in
Machine Learning to improve the model performance or to customize model
hyperparameters to better suit the dataset. There are different tools and packages that
use grid or random search algorithms for hyperparameters optimization. But these
algorithms do not indicate the importance of different hyperparameter combinations or
the correlation between hyperparameters and the loss function. Deep learning models
consist of multiple layers with fully-connected individual neurons that makes it
complicated to understand why the model learns it that way. That is why finding
hyperparameters importance is necessary to define which factors have positive or
negative impacts on the model.

A deep learning model in this project will take images from the camera in the simulator
as input and predict steering values. The aim of this work is to optimize the
hyperparameters tuning process of CNN model. Instead of choosing and combining
randomly, different sets of hyperparameters are selected systematically through
multivariate quadratic regression.

1

Statutory Declaration

I herewith declare that I have completed the present thesis independently making use
only of the specified literature. Sentences or parts of sentences quoted literally are
marked as quotations, identification of other references with regard to the statement
and scope of the work is quoted.

____________________ ___________________
Location, Date Signature

2

Table of Contents

List of figures 5
List of tables 7
Listings 8
List of abbreviations 9
Mathematical notation 10
1. Introduction 11

1.1 Definition of autonomous driving 12
1.2 Levels of autonomous driving 12
1.3 General structure of autonomous driving 14

2. Basic theory 15
2.1 Image processing 15

2.1.1 Color space 15
2.1.2 Convolutional operation 16
2.1.3 Filter 18

2.2 Supervised learning and neural network 20
2.2.1 Supervised learning 20
2.2.2 Neural network 21
2.2.3 Vectorization 21
2.2.4 Activation function 23
2.2.5 Loss function 24
2.2.6 Regularization 25
2.2.7 Backpropagation 26
2.2.8 Optimizer 28

2.2.8.1 Gradient Descent (GD) 28
2.2.8.2 Root Mean Squared Propagation (RMSProp) 30
2.2.8.3 Adaptive moment estimation (Adam) 31

2.3 Convolutional neural network 32
2.3.1 Convolutional layer 32
2.3.2 Pooling layer 33
2.3.3 Fully-connected layer 34

2.4 Regression 35
2.5 Gaussian kernel smoothing 36

3. Concept 38
3.1 Main concept 38
3.2 Component diagram of the program 40
3.3 Advantages and disadvantages of software tools 41

3

3.4 Dataset 43
3.4.1 Data collecting 43
3.4.2 Data preprocessing 44

3.5 Model architecture 47
3.6 Hyperparameter tuning using multivariate quadratic regression 48

4. Implementation 51
4.1 Software 51

4.1.1 Udacity’s self - driving car simulator 51
4.1.2 Tensorflow and Keras 52
4.1.3 Version control 53
4.1.4 Kaggle 56

4.2 Images augmentation and preprocessing 56
4.3 The program 60

5. Results 67
Summary 71
References 72

4

List of figures
Fig. 1.1: Autonomous driving system by Alexandru Serban 11
Fig. 1.2: Autonomous driving system 14
Fig. 2.1: A 8-bit grayscale image 15
Fig. 2.2: The image with padding, 17𝑝 = 2
Fig. 2.3: Gaussian kernel 19
Fig. 2.4: 3x3 Gaussian filter 19
Fig. 2.5: Structure of a perceptron 21
Fig. 2.6: Relu function 23
Fig. 2.7: Tanh function 24
Fig. 2.8: Fully-connected network and dropped out network 25
Fig. 2.9: Local and global minimum. 29
Fig. 2.10: Three main layers in CNN model 32
Fig 2.11: Convolutional operation on 3 channels images RGB with 3x3x3 kernel 33
Fig. 2.12: Convolutional operation for grayscale image 33
Fig. 2.13: Max pooling with 2x2 filter and stride 2 34
Fig. 2.14: Fully-connected layer with two hidden layers 34
Fig. 2.15: Gaussian kernel smoothing 36
Fig. 3.1: Running the experiments to generate the dataset for regression model 38
Fig. 3.2: The workflow of the CNN model 39
Fig. 3.3: Optimizing process with regression 39
Fig. 3.4: The component diagram of the project 40
Fig. 3.5: A view in Udacity software 43
Fig. 3.6: Dataset for training 44
Fig. 3.7: The distribution of Steering data 45
Fig. 3.8: The distribution of Steering data after balancing 45
Fig. 3.9: Original steering values 46
Fig. 3.10: Steering values after smoothing 46
Fig. 3.11: Nvidia mode architecture 48
Fig. 4.1: Udacity simulator program 51
Fig. 4.2: Remote repository on Github 54
Fig. 4.3: The master and test branches in this project 54
Fig. 4.4: Workspace in Weights & Biases 55
Fig. 4.5: Kaggle Notebook interface 56
Fig. 4.6: The original image (left) and shifted image (right) 57
Fig. 4.7: The original image (left) zoomed image (right) 57
Fig. 4.8: The original image (left) brightness value is greater than 1 (right) 58
Fig. 4.9: The original image (left) flipped image (right) 58
Fig. 4.10: The original image (left) dropped image (right) 59

5

Fig. 4.11: The original image (left) grayscale image (right) 59
Fig. 4.12: The original image (left) blurred image (right) 60
Fig. 4.13: DataFrame of training data. 64
Fig. 5.1: Average loss and hyperparameters 68
Fig. 5.2: Loss and validation loss 69
Fig. 5.3: Steering values and prediction before smoothing 70
Fig. 5.4: Steering values and prediction after smoothing 70

6

List of tables
Table 5.1: The values of hyperparameters for data collecting 67
Table 5.2: Dataset of hyperparameters. 67

7

Listings
Code snippet 4.1: function for creating neural network 52
Code snippet 4.2: code for shifting images 57
Code snippet 4.3: code for zooming images 57
Code snippet 4.4: code for adjusting the brightness of images 58
Code snippet 4.5: code for flipping images 58
Code snippet 4.6: code for dropping the images 59
Code snippet 4.7: code for changing the color space 59
Code snippet 4.8: code for blurring images with kernel 3x3 60
Code snippet 4.9: configuration for hyperparameter to run the experiments 60
Code snippet 4.10: function to balance the dataset 62
Code snippet 4.11: function to vectorize the dataset 62
Code snippet 4.12: function to preprocess the images 63
Code snippet 4.13: code for calling the function to read and preprocess data 64
Code snippet 4.14: code for calling the function to vectorize and preprocess images 64
Code snippet 4.15: code for running the experiments on Weights & Biases platform 64
Code snippet 4.16: code for determining the regression model 65
Code snippet 4.17: code for solving the system of equations 65
Code snippet 4.18: code for training and saving to determine the de model 66

8

List of abbreviations
ADAS Advanced Driving Assistance Systems

CNN Convolutional neural network

MSE Mean squared error

MAE Mean absolute error

GD Gradient descent

SGD Stochastic Gradient Descent

Mini-batch SGD Mini-batch Stochastic Gradient Descent

ADAM Adaptive moment estimation

RMSProp Root Mean Squared Propagation

EWMA Exponentially weighted average

9

Mathematical notation
● Numbers are represented by letters written in non-bold form: 𝑥, 𝑦
● Vectors are represented by bold lowercase letters: x(k), y(k)
● Matrices are represented by capital letters: 𝑋, 𝑌

x(k) th vector in a training set, round bracket represents the𝑘
order of samples

y(k) th vector in output set𝑘
th element in input vector𝑥

𝑖
𝑖

th element in output vector𝑦
𝑖

𝑖

w[L] Vector of weights at th layer, square bracket represents the𝐿
order of layer

b[L] Vector of biases at th layer𝐿
a[L] Vector of activation function at th layer𝐿

10

1. Introduction
The groundwork of this project is based on the end-to-end network architecture of
NVIDIA’s research for autonomous driving [1]. A traditional pipeline for autonomous
driving consists of several different components: Sensor Fusion, World Model,
Behavior Generation, Planning and Vehicle Control [2].

Firstly, the input data coming from sensors and cameras will be processed in the
Sensor Fusion layer to extract the relevant features, then all of these features will be
combined in the World Model layer to create a complete picture of the surrounding
environment. From this stage, the system must choose decisions for the vehicle in
layer Behavior Generation and Planning. Finally, the system sends control values
through the Vehicle Control layer to Actuator Interface modules [3].

Fig. 1.1: Autonomous driving system by Alexandru Serban [3]

With end-to-end deep learning it can take all those multiple stages and replace them
with a single model. The end-to-end model is able to control the autonomous car
directly from the pixels provided by the embedded cameras [1]. Based on the basic

11

network architecture of NVIDIA, this project will apply different variants and tune
various hyperparameters.

1.1 Definition of autonomous driving
In contrast to automated vehicles, which only take over part of the control, autonomous
cars replace the drivers completely. The autonomous vehicles have no influence from
humans and can decide for themselves such as how to behave around the curve
(brake, adjust the steering wheel) or how to react to a specific situation (pedestrians or
animals appear suddenly).

Many advantages of autonomous driving can be considered. It offers the elderly or
people with disabilities the chance to drive by themselves when the public transport or
taxis are uncomfortable or too expensive. In addition, when all autonomous cars
connect together through IoT (Internet of Things), it can reduce the number of crashes
on the roads. The cars will receive signals from each other and adjust their speed by
themselves before the crossroads to avoid collision. For this scenario, cyber security
plays an important role.

1.2 Levels of autonomous driving
According to current industry standard categorized by the Society of Automotive
Engineers (SAE), there are 6 levels of autonomous driving, based on their degree of
automation [7]:

● Level 0: no automation
● Level 1: very light automation (cruise control)
● Level 2: automation but requires human attention all the times
● Level 3: can self-drive but require intervention in some conditions
● Level 4: highly autonomous
● Level 5: completely autonomous

Level 1: Driver assistance
At this level the vehicles can perform only a basic assistant task at any given time like
braking or accelerating.

Human requirements: all the times
Features: adaptive cruise control, lane keeping

12

Level 2: Partial driving automation
The vehicles have some form of Advanced Driving Assistance Systems (ADAS). ADAS
can take control simultaneously of steering, braking and acceleration systems.

Human requirements: the driver must pay attention and take control in many situations
Features: lane keeping and adaptive cruise control concurrently

Level 3: Conditional driving automation
The vehicles at this level can run mainly by themselves and require human intervention
in some extreme environments or failures. In 2022 the Drive Pilot system of Mercedes -
Benz is the world’s first fully certified level 3 and now can be ordered in Germany as an
option in S-class or EQS models [8]. It can navigate the traffic and detect the weather
conditions.

Human requirements: the driver must intervene during extreme conditions
Features: Traffic Jam Chauffeur

Level 4: High driving automation
At this level the system can drive on its own and human intervention is not necessary.
The limitation of this level is geography. The system can be applied in particular areas
and in some weather conditions would also affect these vehicles and would likely
disturb their operation. Google’s autonomous vehicles are targeted to work at this level

Human requirements: not require
Feature: driverless bus or taxi

Level 5: Fully driving automation
At this highest level of autonomous driving the vehicles are not bounded by geofences
and can drive by themselves in all conditions. Currently, there are no real examples of
this level outside of science fiction.

13

1.3 General structure of autonomous driving

Fig. 1.2: Autonomous driving system

● At the beginning, the autonomous vehicle collects the data through various
components (lidar, radar, sensors,...).

● These data are feeded forward a deep learning model. Through repeated
training, the deep learning model improves and can independently create
appropriate values for the given situation

● The vehicle uses these values to control steering angles, brake pressure,
acceleration, etc.

There are different combinations of hardware and software in autonomous cars. Here
is just the basic components:

● Camera: is used to collect dataset for deep learning model

● Lidar (light detection and ranging): emits laser signals, up to 150,000 pulses per
second, to measure distance. Laser signals with the wavelength between 500 -
600 nm beam at the objects and measure the time it takes for the laser to return
to its source. This is why lidar is more accurate and faster than radar

● Radar (radio detection and ranging): measures the long distances to other
traffic. The system works almost the same as Lidar but it uses radio waves
instead of laser signals. With the wavelength between 3mm to 30cm radar can
function at long distances [7].

14

2. Basic theory

2.1 Image processing
A computer image is a picture composed of an array of elements called pixels. In an
8-bit grayscale image each pixel occupies exactly one byte. This means each pixel has
256 possible numerical values, from 0 to 255, which each correspond to the brightness
of one pixel in a picture, with 0 being black and 255 being white [9].

2.1.1 Color space
RGB color space
RGB color space is a combination of 3 colors: red, green, blue. A color image is just an
extension of a grayscale image, which is stored as a 3 dimensional array with height x
width x 3 that defines red, green, and blue color components for each individual pixel.
The color of each pixel is determined by the combination of the red, green, and blue
intensities: . Since the three colors have integer𝑓(𝑥, 𝑦) = [𝑟(𝑥, 𝑦), 𝑔(𝑥, 𝑦), 𝑏(𝑥, 𝑦)]
values from 0 to 255, there are a total of 256*256*256 = 16,777,216 combinations or
color choices.

Grayscale image
To increase the computational speed the images in this project are converted from
RGB color space into grayscale (black and white). This method reduces the number of
pixels in images, also the size from 3 to 2 dimensions: height x width x 1.

Fig. 2.1: A 8-bit grayscale image [9]

15

2.1.2 Convolutional operation

Convolution is a mathematical operation which is fundamental to many common image
processing operators. Convolution provides a way of multiplying together two arrays of
numbers to produce a third array of numbers. This can be used in image processing to
implement operators whose output pixel values are simple linear combinations of
certain input pixel values [12].

𝑦[ℎ, 𝑤] =
𝑚=−∞

∞

∑
𝑛=−∞

∞

∑ 𝑘[𝑚, 𝑛]. 𝑥[ℎ − 𝑚, 𝑤 − 𝑛]

: output image matrix𝑦

: input image matrix𝑥

: kernel matrix.𝑘

h and w: indices the image matrices

and : indices of the kernel.𝑚 𝑛

The size of output image [12]:

(𝑛
ℎ𝑒𝑖𝑔ℎ𝑡

− 𝑘
ℎ𝑒𝑖𝑔ℎ𝑡

+ 1), (𝑛
𝑤𝑖𝑑𝑡ℎ

− 𝑘
𝑤𝑖𝑑𝑡ℎ

+ 1)

With input image size and kernel size . In Tensorflow𝑛
ℎ𝑒𝑖𝑔ℎ𝑡

× 𝑛
𝑤𝑖𝑑𝑡ℎ

𝑘
ℎ𝑒𝑖𝑔ℎ𝑡

× 𝑘
𝑤𝑖𝑑𝑡ℎ

convolutional layer can be implemented by this function:

Conv2D(filters, kernel_size, strides, input_shape, activation)

Filter: Integer, the dimensionality of the output space

Kernel_size: A list of 2 integers, specifying the height and width of the 2D convolution
window.

Stride: A list of 2 integers, specifying the strides of the convolution along the height and
width

Activation: Activation function [10]

16

Padding

The kernels overlap many times the pixels, which are in the middle of the image. The
pixels, which are at the edges or corners, are used much less in the output. That is a
waste of information near the edge of the image. The output image also shrinks after
the convolutional operation. After hundred convolutional layers the size of the output
image becomes very small. Padding technique will solve these problems. The image is
added one or many additional borders around the edges and the values of these pixels
are zeroes.

Fig. 2.2: The image with padding, 𝑝 = 2

The size of the input image is 32x32x3 with 2 borders of zeroes around the edges that
creates a new size 36x36x3. This technique minimizes the reduction of size in the
output layer or it is a way of increasing the size of an image to counteract the fact that
stride reduces the size. In general, if a total of rows of padding (roughly half on top𝑝

ℎ

and half on bottom) and a total of columns of padding (roughly half on the left and𝑝
𝑤

half on the right) are added, the output shape will be [12]:

(𝑛
ℎ𝑒𝑖𝑔ℎ𝑡

− 𝑘
ℎ𝑒𝑖𝑔ℎ𝑡

+ 𝑝
ℎ𝑒𝑖𝑔ℎ𝑡

+ 1), (𝑛
𝑤𝑖𝑑𝑡ℎ

− 𝑘
𝑤𝑖𝑑𝑡ℎ

+ 𝑝
𝑤𝑖𝑑𝑡ℎ

+ 1)

Stride

When the convolutional operation begins, the window at the upper-left corner of the
input image, and then slide it over all locations down and to the right, by default sliding
step one element at a time. However, either for computational efficiency or
downsample, the window moves more than one element at a time, skipping the

17

intermediate locations. This is particularly useful if the convolution kernel is large since
it captures a large area of the underlying image.

Stride is the number of rows and columns traversed per slide. When the stride for the
height is and the stride for the width is , the output shape is [12]:𝑠

ℎ
𝑠

𝑤

[(𝑛
ℎ𝑒𝑖𝑔ℎ𝑡

− 𝑘
ℎ𝑒𝑖𝑔ℎ𝑡

+ 𝑝
ℎ𝑒𝑖𝑔ℎ𝑡

+ 𝑠
ℎ𝑒𝑖𝑔ℎ𝑡

)/𝑠
ℎ𝑒𝑖𝑔ℎ𝑡

], [(𝑛
ℎ𝑒𝑖𝑔ℎ𝑡

− 𝑘
ℎ𝑒𝑖𝑔ℎ𝑡

+ 𝑝
ℎ𝑒𝑖𝑔ℎ𝑡

+ 𝑠
𝑤𝑖𝑑𝑡ℎ

)/ 𝑠
𝑤𝑖𝑑𝑡ℎ

]

2.1.3 Filter
Image filtering changes the range (the pixel values) of an image, so the colors of the
image are altered without changing the pixel positions. The goal of using filters is to
modify or enhance image properties and to extract valuable information from the
pictures such as edges, corners, and blobs. There are 2 types of filter: low-pass filter
and high-pass filter

● Low-pass filter: in the frequency domain it suppresses high frequencies and
preserves the low frequencies. It is used for smoothing the image, e.g., mean
filter, Gaussian filter.

● High-pass filter: opposite to low-pass filter it suppresses low frequencies and
preserves the high frequencies. It is used for sharpening the image or detecting
the edges, e.g., Sobel filter.

The width and height of the filter must be an odd number, so that the pixels being
worked on are always in their center. A Gaussian filter, which is used in this project to
smooth and preprocess the images before training, will be described in the following
section.

Gaussian filter

The Gaussian smoothing operator is a 2-D convolution operator that acts as low-pass
filter and is used to blur images and remove high spatial frequency components from
an image (noise). It uses the shape of a Gaussian (bell-shaped). In 2-D Gaussian filter
has this formula [11]:

𝐺(𝑥, 𝑦) = 1
σ 2π

𝑒
−(𝑥2 +𝑦2)

2σ2

18

With is the standard deviation of distribution. Gaussian distribution has a bell curve,σ
as a 2-D Gaussian kernel looks like this:

Fig. 2.3: Gaussian kernel [11]

The idea of Gaussian smoothing is: the pixels nearest the center are given more
weight than the other far away from the center. Since the image is stored as a
collection of discrete pixels, therefore it is necessary to produce a discrete
approximation to the Gaussian function before performing the convolution.

Fig. 2.4: 3x3 Gaussian filter [11]

In figure the red top-left kernel on the left image makes a convolutional operation with
the pixels to create the small top-left new pixel on the right image.The numbers in the

19

squares are the values of pixels and the numbers under the square are values of the
Gaussian blur kernel.

In cv2 library this function is used for Gaussian filter:

 cv2.GaussianBlur(src, ksize)

The input parameters:

src: input image

ksize: the size of the kernel

2.2 Supervised learning and neural network
Machine Learning is a field of research that gives computers the ability to solve the
problem by themselves without being explicitly programmed. The goal of machine
learning is to create a model and tune its parameters to the given data in order to apply
it to the unknown data to generate predictions or recommendations. These processes
can be optimized.

Machine Learning can be divided into 4 categories, which suit different problems:
supervised learning, unsupervised learning, semi-supervised learning and
reinforcement learning. In this project supervised learning is the main focus.

2.2.1 Supervised learning
In supervised learning, the goal is to learn a mapping from inputs x to outputs y, given
a set of labeled input-output pairs , where is the𝐷 = (𝑥

𝑖
, 𝑦

𝑖
) 𝑤𝑖𝑡ℎ 𝑖 = 1... 𝑚 | 𝑚 ∈𝑁 𝐷

training set, is the ordinal number of training samples. Each training input and𝑖 𝑥
𝑖

output is a element of vector x and y𝑦
𝑖

= [𝑥
1
, 𝑥

2
,..., 𝑥

𝑚
] | 𝑥 ϵ 𝑅 = [𝑦

1
, 𝑦

2
,..., 𝑦

𝑚
] | 𝑦 ϵ 𝑅

[12]. In this project x is a vector of training images and y is a vector of steering values.
Each input represents a size of image, therefore it has 3 dimensions: x𝑥

𝑖
ℎ𝑒𝑖𝑔ℎ𝑡 𝑤𝑖𝑑𝑡ℎ

x .𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠

20

2.2.2 Neural network
Neural network is a part of supervised learning. Their name and structure are inspired
by the human brain and the way biological neurons transmit signals to one another.
Artificial neural networks consist of a node layer containing an input layer, one or more
hidden layers, and an output layer. Each node is connected to another and has an
associated weights and biases .𝑤 𝑏

Fig. 2.5: Structure of a perceptron [6]

Like representation of figure [6], there are a vector of input x(k) with= [𝑥
1
, 𝑥

2
, 𝑥

3
] | 𝑥 ϵ 𝑅

is th example in training set and a vector of weight w[i] with𝑘 𝑘 = [𝑤
1
[𝑖], 𝑤

2
[𝑖], 𝑤

3
[𝑖]] | 𝑤 ϵ 𝑅

is th layer. A linear combination between inputs x(k), weights w[i] and biases b[i]:𝑖 𝑖

z[i] = w[i].x(k) + b[i]

Activation function adds non-linearity to the neural network and it is also an output of
this layer:

a[i] (z[i])= σ

Then this output becomes an input of the next layer and this process repeats until it
reaches the output layer.

2.2.3 Vectorization
Instead of looping each example to the whole training set like this pseudo code:

For j = 1 to m:
z[i] (j) = w[i].x(k) + b[i]

a[i] (j) (z[i] (j))= σ

21

This implementation costs much computational time O(m) with m is the number of
examples in the training dataset. For a better solution, these input vectors can be
stacked together in a matrix = [x(1), x(2) , x(3) , … x(m)] and implement all of them with:𝑋

𝑍[𝑖] = 𝑤[𝑖]. 𝑋 + 𝑏[𝑖]

𝐴[𝑖] = σ(𝑍[𝑖])

In Numpy library, it supports the function dot() to multiply 2 matrices. In these following
lines of code the matrices a and b multiply together, each matrix has 1.000.000
elements. The time of implementation between vectorized and unvectorized version is
compared.

size_trainingset = 1000000

a = np.random.rand(size_trainingset)

b = np.random.rand(size_trainingset)

tic = time.time()

c = np.dot(a, b)

toc = time.time()

print(f"Result: {c}")

print("Vectorized multiplication: ", ((toc-tic)*1000), "ms")

Result: 250157.01333635935

Vectorized multiplication: 1.966714859008789 ms

tic = time.time()

for i in range(size_trainingset):

 c += a[i] * b[i]

toc = time.time()

print(f"Result: {c}")

print("Unvectorized version: ", ((toc-tic)*1000), "ms")

Result: 250157.0133363599

Unvectorized version: 398.0224132537842 ms

2 methods have the same result but the time of implementation vectorized version is
faster than unvectorized version more than 200 times. In this project all of the training
data are vectorized before doing computational things.

22

2.2.4 Activation function
An activation function is a function that is added into an artificial neural network in order
to help the network learn complex patterns in the data. It takes in the output signal from
the previous cell and converts it into some form that can be taken as input to the next
cell.

Activation functions are useful because they add non-linearities into neural networks,
which allows the neural networks to learn powerful operations. There are different
reasons to use activation function in neural network:

● The input of activation function is where is weights of cell, is the𝑊. 𝑋 + 𝑏 𝑊 𝑋
input and is the bias. If the result of this equation is not restricted to a certain𝑏
limit, it can go extremely high especially in the case of very deep neural
networks that have millions of parameters.

● If the activation functions were removed from a feedforward process, the entire
network could be refactored to a simple linear operation or matrix transformation
on its input and it would no longer be capable of performing complex tasks such
as image recognition.

Rectified linear activation (ReLu)
The Relu function is calculated by:

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)

Fig. 2.6: Relu function

If the input is negative, then , otherwise [6]𝑥 𝑓(𝑥) = 0 𝑓(𝑥) = 𝑥

23

Hyperbolic Tangent (Tanh)
Tanh is calculated by:

𝑇𝑎𝑛ℎ 𝑥 = 𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥

Fig. 2.7: Tanh function

It is very similar to the sigmoid activation function and even has the same S-shape but

the range is different from -1 to 1. The larger the input (more positive), the closer the

output value will be to 1.0, whereas the smaller the input (more negative), the closer

the output will be to -1.0 [6].

2.2.5 Loss function
A loss function in Machine Learning is a measure of how accurately a model can
predict. The loss function takes two items as input: predicted outputs from the model
and actual outputs of the dataset. The output of the loss function is a measure of how
well the model predicts the outcome. A high value for the loss means the model
performed very poorly and a low value for the loss means the model performed very
well.

The mean squared error (MSE) is the most common and simple loss function. It takes
the difference between predicted values and actual values, square it and average it
across the whole dataset [13].

24

𝑀𝑆𝐸 = 1
𝑁

𝑖=1

𝑁

∑ (𝑦
𝑖

− 𝑦
𝑖

^
)

2

: the number of samples in the dataset𝑁
: the target value𝑦

: the predicted value.𝑦
^

The MSE puts larger weight on these errors due to the squaring part of the function.
Large errors are emphasized and have a relatively greater effect on the value of the
performance metric. At the same time, the effect of relatively small errors will be even
smaller [13]. Besides that MSE is used in this project because it is differentiable, which
makes it easy to perform mathematical derivative in comparison to a non-differentiable
function like mean absolute error (MAE).

2.2.6 Regularization
In order to avoid overfitting, regularization techniques play an important role in Machine
Learning. The main aim of regularization is to reduce over-complexity of Machine
Learning models. After this process the model performs well not only on the training
dataset, but also has the ability to generalize to the new examples, which it has not
seen in training dataset. Dropout regularization is used in this project.

Dropout regularization
Dropout is also the regularization technique, which is used in this project. Dropout
refers to the process of ignoring certain neurons in the network during training.

Fig. 2.8: Fully-connected network and dropped out network [20]

25

The network on the left is a fully-connected network, where all units are activated. On
the right, some units in the network are dropped out of the model - the values of their
weights and biases are not considered during the training. When applying dropout to
the network, which drops some units in the hidden layers randomly at the time of
training. Each time the gradient is updated and the new different units are dropped
based on the probability hyperparameter . In Tensorflow dropout is applied by this𝑝
function:

tf.keras.layers.Dropout(rate)

where rate is probability that the given units will be dropped.

2.2.7 Backpropagation
The backpropagation algorithm generally consists of passes (epochs) with each pass
consisting of two phases [24]:

● Feedforward phase: during this phase, the values of training data are
transported from input layers through the hidden layers to the output layer. The

predicted output are created through weights and activation functions.𝑦
^

● Feedbackward phase: the predicted output and the target output are𝑦
^
 𝑦

compared through loss function MSE. In this phase the process goes back and
adjusts weights and biases for the purpose of reducing loss function.

Backpropagation always starts from the output layer and updates weights and biases
in each layer. It adjusts the parameters in neurons throughout the network to get the
desired output in the output layer. As described in 2.2.4 Loss function, loss function
MSE is used in this project:

𝐿 = 1
𝑁

𝑖=1

𝑁

∑ (𝑦
𝑖

− 𝑎(𝐿))
2

: the number of samples in the dataset𝑁
: the target value𝑦

: activation from the last layer𝑎(𝐿)

26

In order to improve the network, it must be calculated how a change in weights and
biases affect loss function.

z(L) = w(L).a(L-1) + b
a(L) (z(L))= σ

w(L): weight parameters of neuron from the last layer
b: bias parameter of neuron
a(L-1): activation function from second last layer

The algorithm runs backward to optimize the loss function MSE. The chain rule is
applied, since weights and biases can not be derived directly from loss function. This
calculation is based on the partial derivative of loss function in relation to weights and
biases [24].

: the derivative of loss function with respect to weights

: the derivative of loss function with respect to biases

: the derivative of loss function with respect to activation function

: the derivative of activation function with respect to equation𝑧

: the derivative of equation with respect to weights𝑧

: the derivative of equation with respect to biases𝑧

27

These equations measure the ratio of how a particular weight and bias affect the loss
function, which is optimized. can not directly found in loss function, that is why a𝑤
change of in equation is considered, because equation holds . And the change𝑤 𝑧 𝑧 𝑤
of equation in activation function will affect the change of activation function in𝑧 𝑎 𝑎
loss function . The new weights and biases are updated in each iteration. This𝐿
optimizing process is described in more detail in the next section.

2.2.8 Optimizer
Optimizers are algorithms used to change the attributes of a neural network such as
weights and biases in the layers in order to reduce the losses. The purpose of the
optimizer in this project is to minimize the difference between predicted steering values
and actual steering values (MSE). There are many different algorithms to optimize the
loss function.

2.2.8.1 Gradient Descent (GD)
Gradient Descent is one of the most popular optimization algorithms. It takes the
derivatives of loss function with respect to the parameters such as weights and biases.
Two or more derivatives of the same function are called a gradient. This gradient will
descend to the lowest point of the loss function. That is why this algorithm is called
Gradient Descent [14].

𝑤
𝑛𝑒𝑤

= 𝑤
𝑜𝑙𝑑

− α ∂𝐿
∂𝑤

𝑏
𝑛𝑒𝑤

= 𝑏
𝑜𝑙𝑑

− α ∂𝐿
∂𝑏

: updated weight in every new step𝑤
𝑛𝑒𝑤

: the old weight𝑤
𝑜𝑙𝑑

: updated bias in every new step𝑏
𝑛𝑒𝑤

: the old bias𝑏
𝑜𝑙𝑑

: learning rate. Learning rate is one of the hyperparameters that needs to be tuned.α
When the learning rate is too small, the learning process will be longer, but when the
learning rate is too large, it will overshoot the minimum of the loss curve.

: partial derivative of loss function with respect to weight. It is the rate of change of∂𝐿
∂𝑤

loss function to the change in weight.

28

: partial derivative of loss function with respect to bias. It is the rate of change of loss∂𝐿
∂𝑏

function to the change in bias

In order to reach the lowest point of the loss function the updated weights need to go to
the opposite direction of the derivative, that is why there is a minus in this algorithm.
But GD is not efficient for big data because it costs a lot of time and computational
resources when this algorithm runs through all the samples of a big dataset. Instead of
using GD Stochastic Gradient Descent (SGD) is applied for a large dataset.

Momentum

Fig. 2.9: Local and global minimum.

The goal is to reach the global minimum, the lowest point on the function. But
sometimes GD is stuck at the local minimum, because at this point the slope is∂𝐿

∂𝑤

zero that makes the learning process stop. In this case the momentum is added to
push the point to continue rolling to the global minimum. This accumulated speed is
equivalent to the exponentially weighted average (EWA) of past gradients [16].

𝑚
(𝑤, 𝑡)

= β. 𝑚
(𝑤, 𝑡−1)

+ (1 − β). ∂𝐿
∂𝑤

𝑡
, 𝑤𝑖𝑡ℎ 0 ≤ β ≤ 1

𝑚
(𝑏, 𝑡)

= β. 𝑚
(𝑏, 𝑡−1)

+ (1 − β). ∂𝐿
∂𝑏

𝑡
, 𝑤𝑖𝑡ℎ 0 ≤ β ≤ 1

: current exponentially weighted average gradient of the weight𝑚
(𝑤, 𝑡)

: previously exponentially weighted average gradient of the weight until the𝑚
(𝑤, 𝑡−1)

time 𝑡 − 1

29

: current exponentially weighted average gradient of the bias𝑚
(𝑏, 𝑡)

: previously exponentially weighted average gradient of the bias until the time𝑚
(𝑏, 𝑡−1)

𝑡 − 1

: current gradient of weight at time∂𝐿
∂𝑤

𝑡
𝑡

: current gradient of bias at time∂𝐿
∂𝑏

𝑡
𝑡

: weightage. It is given more weight to the current gradient than to the previouslyβ
accumulated gradient.

When the point reaches the local minimum in figure 2.9 , the slope becomes zero∂𝐿
∂𝑤

and the equation of current momentum is , not equal to zero like𝑚
(𝑤, 𝑡)

= β. 𝑚
(𝑤, 𝑡−1)

GD. The new weights and biases are not equal to zero and continues to update:

𝑤
𝑡

= 𝑤
𝑡−1

− α. 𝑚
(𝑤, 𝑡)

𝑏
𝑡

= 𝑏
𝑡−1

− α. 𝑚
(𝑏, 𝑡)

: current weight𝑤
𝑡

: previous weight𝑤
𝑡−1

: current bias𝑏
𝑡

: previous bias𝑏
𝑡−1

: learning rateα

2.2.8.2 Root Mean Squared Propagation (RMSProp)
The other problem of GD is the learning rate is constant during the learning process.
The optimal scenario to accelerate the optimization processes is the learning rate is
updated after each iteration [17]. The gradient and changes during the training∂𝐿

∂𝑤
∂𝐿
∂𝑏

process and this rate of change is applied to update learning rate [17]:

𝑣
(𝑤, 𝑡)

= β. 𝑣
(𝑤, 𝑡−1)

+ (1 − β). (∂𝐿
∂𝑤

𝑡
)2, 𝑤𝑖𝑡ℎ 0 ≤ β ≤ 1

𝑣
(𝑏, 𝑡)

= β. 𝑣
(𝑏, 𝑡−1)

+ (1 − β). (∂𝐿
∂𝑏

𝑡
)2, 𝑤𝑖𝑡ℎ 0 ≤ β ≤ 1

30

: current exponentially weighted average squared gradient of the weight. The𝑣
(𝑤, 𝑡)

more recent is, the more impact it has on∂𝐿
∂𝑤

𝑡
𝑣

𝑤

: current exponentially weighted average squared gradient of the bias𝑣
(𝑏, 𝑡)

: weightage. It can be self defined, but in paper Hinton advised should be 0.9 [17].β β

The weights and biases are updated after each iterations:

𝑤
𝑡

= 𝑤
𝑡−1

− α

𝑣
𝑤

+ϵ

∂𝐿
∂𝑤

𝑏
𝑡

= 𝑏
𝑡−1

− α

𝑣
𝑤

+ϵ

∂𝐿
∂𝑏

: error term. It is added to so that the denominator does not become zero, as defaultε 𝑣
= 10-8ε
: learning rateα

Through the process the sum of squared gradients and always increase and𝑣
𝑤

𝑣
𝑏

make the learning rate decrease. Over the time with iterations the learning rateα α
tend to zero and makes and that leads to slower convergence.𝑤

𝑡
≈ 𝑤

𝑡−1
𝑏

𝑡
≈ 𝑏

𝑡−1

2.2.8.3 Adaptive moment estimation (Adam)
Adam is the most popular and effective of all the optimizers. It is a combination
between GD with momentum and RMSProp [18]:

𝑚
𝑡

= β
1
. 𝑚

 𝑡−1
+ (1 − β

1
). ∂𝐿

∂𝑤
𝑡

𝑣
𝑡

= β
2
. 𝑣

 𝑡−1
+ (1 − β

2
). (∂𝐿

∂𝑤
𝑡

)2

: current exponentially weighted average gradient of the weight𝑚
𝑡

: parameter of Momentum, as default [18].β
1

β
1

= 0. 9

: current exponentially weighted average squared gradient of the weight.𝑣
𝑡

: parameter of RMSProp, as default [18].β
2

β
2

= 0. 999

31

2.3 Convolutional neural network
Convolutional neural network (CNN) is a sequence of layers, which reduce the images
into easier form to process without losing features for getting a good prediction. It is
important to design a model architecture, which is not only good at learning features
but also scalable in big data. There are three main types of layer to build CNN
architecture: Convolutional layer, Pooling layer and Fully-connected layer [31].

Fig. 2.10: Three main layers in CNN model [31]

2.3.1 Convolutional layer
This layer applies convolutional operation, described in 2.1.2 Convolutional operation,
to the input images. After this layer the image size is decreased and it brings all the
information in the field into a single pixel. The purpose is size reduction as well as
extraction of high-level features such as edges of the input images. The deep
dimension of output after this layer is depend on the number of applied filters [xℎ𝑒𝑖𝑔ℎ𝑡

x] [31].𝑤𝑖𝑑𝑡ℎ 𝑓𝑖𝑙𝑡𝑒𝑟𝑠

32

Fig. 2.11: Convolutional operation on three channels images RGB with 3x3x3 kernel

In this project the color space of input images are converted from RGB to Grayscale
color space in order to decrease the dimension and speed up computational time,
described in 2.1.1 Color space. In fig. 2.13 is the convolution operation between the
grayscale image 5x5x1 and the kernel 3x3x1

Fig. 2.12: Convolutional operation for grayscale image

2.3.2 Pooling layer
Similar to the purpose of the Convolutional layer, the Pooling layer is responsible for
downsampling the size of convolved features. This layer reduces the amount of
parameters and computation in the network, therefore it also controls overfitting. There
are two types of pooling: Max pooling and Average pooling.

33

Fig. 2.13: Max pooling with 2x2 filter and stride 2 [21]

Max pooling takes max values from the portion of images covered by the kernel, while
the average pooling returns the average of all the values from the portion of images
covered by the kernel. In figure. Max pooling decreases the image size from 4x4 to
2x2 with 2x2 filter and stride 2.

2.3.3 Fully-connected layer
In a Fully-connected layer every single neuron in every layer connects to each other (a
multilayer perceptron). Like described in 2.2.2 Neural network, it is a combination of
equation between input values and parameters of the network .The purpose of this
layer is to tune the weights and biases parameters in each layer by using𝑤 𝑏
backpropagation and optimizers.

Fig. 2.14: Fully-connected layer with two hidden layers [21]

34

2.4 Regression
Regression is a method to measure the relationship between dependent variables
(regressors) and independent variables (target). It captures the correlation between
variables observed in the data set and determines whether those correlations are
statistically significant or not. There are different variants of regression: simple
regression, multivariate regression, polynomial regression, …

Simple regression:
A model for simple regression with observations , , … are𝑛 (𝑥

1
, 𝑦

1
) (𝑥

2
, 𝑦

2
) (𝑥

𝑛
, 𝑦

𝑛
)

pairs of regressors and target [23]:

: th target variable,𝑦
𝑖

𝑖 𝑖 = 0, 𝑛

: coefficients, where is the constant term of the modelβ β
0

: th regressor,𝑥
𝑖

𝑖 𝑖 = 0, 𝑛

: th noise term or random errorϵ
𝑖

𝑖

Multivariate regression:
A multivariate regression is an extension of simple regression with more than one
independent variables:

: response vector, dimension𝑌 𝑛×1
: regressor vector with regressors, dimension𝑋 𝑚 𝑛×𝑚
: coefficient vector, dimensionβ 𝑛×1
: random error vector, dimensionϵ 𝑛×1

Or in detail:

35

As described in 2.2.5 Loss function, mean squared error is also used for the regression
model as the evaluator

𝑀𝑆𝐸 = 1
𝑁

𝑖=1

𝑁

∑ (𝑦
𝑖

− 𝑦
𝑖

^
)

2

: the number of samples in the dataset𝑁
: the target value𝑦

: the predicted value.𝑦
^

2.5 Gaussian kernel smoothing
Smoothing is a technique to remove noise or certain frequencies in time series which
improves data quality. The main idea of smoothing is averaging the data points with
their neighbors. Gaussian kernel, which puts different weights for averaging in the
sliding window, is chosen in this project. The shape of the kernel is Gaussian
distribution or bell curve.

Fig. 2.15: Gaussian kernel smoothing [30]

Gaussian kernel smoothing uses a weighted average of the data points based on their
distance from the center point. The weights are determined by a Gaussian
function,which assigns higher weights to points closer to the mean value of kernel and
lower weights to points further. The closer points have a greater influence on the
smoothed data point. Gaussian kernel formula:

36

𝐾(𝑥) = 1
σ 2π

𝑒
−(𝑥−µ)2

2σ2

: input data point𝑥
: mean value of kernelµ
: standard deviationσ

When Gaussian is used for smoothing, it is necessary to define Full Width at Half
Maximum (FWHM). The FWHM is the width of the kernel at half of the maximum the
height of the Gaussian. The standard deviation is depend on the width of sliding
window or FWHM:

σ = 𝐹𝑊𝐻𝑀
8𝑙𝑛(2)

37

3.Concept

3.1 Main concept
This project will mainly focus on optimizing the convolutional neural network (CNN) for
autonomous driving by choosing the closest exact values of hyperparameters. The
images are taken from the simulator and put into the CNN model to predict steering
values. Different combinations of hyperparameters create different loss values. The
loss is the difference between actual steering values and predicted steering values.
Instead of randomly tuning neural networks, this project will optimize the tuning
process more systematically and logically by multivariate quadratic regression. The
regression is built to determine relationships between hyperparameters and the loss.

Fig. 3.1: Running the experiments to generate the dataset for regression model

Firstly in order to generate a dataset for a regression model, a number of experiments
are run by CNN model, which contain the range of hyperparameter values (e.g,
dropout, learning rate, batch size, Tab. 5.1: The values of hyperparameters for data
collecting). After running the experiments, a dataset is created (Tab. 5.2: Dataset of
hyperparameters), which includes hyperparameter values and loss. Regression model
takes hyperparameters and loss from CNN as input. This model is built based on the
hyperparameters as regressors and loss as target variable (more detail in 3.6
Hyperparameter tuning using multivariate quadratic regression).

38

Fig. 3.2: Optimizing process with regression

After defining the regression model, this model is derived and the system of equations
is solved with three variables: batch size, dropout and learning rate in order to find out
which combination has the lowest loss (more detail in 3.6 Hyperparameter tuning using
multivariate quadratic regression). The appropriate strategy for tuning is chosen to find
the best performance model. After training, the CNN model takes images from the
camera as input to predict steering values, which are converted into steering angles in
the Udacity simulator program.

Fig. 3.3: The workflow of the CNN model after training

39

3.2 Component diagram of the program
Component diagram of the program

Fig. 3.4: The component diagram of the project

For easier to manage the source code and debug the whole program is divided into
two small components: experiments creating, multivariate regression. In each
component consists of different functions for different purposes:

● Component experiments creating: consists of different functions, which
preprocesses the data and runs the experiments with different combinations of
hyperparameters automatically in order to create a dataset for regression model.

○ Function balance data: the dataset needs to be balanced because the
steering angles around zero are much higher than other values (more
detail in 3.3.2 Data preprocessing - balancing steering data)

40

○ Function smoothen data: because of limitations of simulator program, the
steering data need to be smoothened (more detail in 3.4.2 Data
preprocessing - smoothing steering data)

○ Function load data to array: in order to increase computational speed a
single datapoint needs to be loaded into Numpy array (more detail in
2.2.3 Vectorization)

○ Function images preprocess pipeline: in this pipeline the images are
preprocessed and augmented before training (more detail in 4.2 Images
augmentation and preprocessing)

○ Function hyperparameter dataset collecting: after running experiments, a
dataset of hyperparameter and loss is collected and fed into a regression
model in order to optimize.

● Component multivariate regression: builds the multivariate quadratic regression
model and solves a system of equations to find the best combination of
hyperparameters for the CNN models by taking a dataset from
“hyperparameters data collecting” in component experiments creating as input.

3.3 Advantages and disadvantages of software tools
The advantages and disadvantages of software tools and programming language are
discussed in this section. The software tools, which are used in this project, include:
Python, Udacity simulator, Tensorflow.

Python
Advantages:

● Python is the most popular and simple high-level programming language. That
helps the users debug easier and improves code quality

● Moreover a wide range of open-source machine learning libraries and
frameworks are built based on python language such as: Tensorflow, Pytorch,
Scikit-Learn.

● Python is a flexible language that can be built and run on different operating
systems like: Linux, Windows, Mac.

41

Disadvantages:
● Python is an interpreted language that makes Python have slower runtime than

compiled languages like C++ or Java. This can be a significant disadvantage
when working with a large dataset.

Udacity simulator
Advantages:

● Udacity simulator provides a realistic simulation environment for driving
conditions. This allows developers to test machine learning models for
autonomous driving in a safe and controlled environment.

● This simulator is an open-source platform that is freely available to the public.

● In comparison with other simulators, Udacity simulator is more lightweight and
without needing a GPU to install.

Disadvantages:
● Because of its lightweight, Udacity simulator can not capture all of the

complexities in real world driving conditions. That leads to algorithms that
perform well in simulation but fail in the real world.

● The quality of images in this simulator is not good enough to use for the training
model in the real world. Because of the limited hardware resource Udacity
simulator is still used in this project.

● The simulator does not allow the car to interact with other vehicles, which does
not reflect the behavior of the real world drivers.

Tensorflow
Advantages:

● Tensorflow is an open-source machine learning framework developed by
Google. That means it is free to use and easy to customize the code.

● Tensorflow is scalable and can handle small and large datasets. It is a good
choice for large scale machine learning projects.

● It is also a flexible framework which supports a wide range of use: images
processing, natural language processing and time series analysis. It is specially
suitable for deep learning tasks, such as convolutional neural networks.

42

Disadvantages:
● This framework has limited interoperability, which means it can be challenging to

integrate Tensorflow with other softwares or frameworks.

● Tensorflow requires powerful hardware to train machine learning models
efficiently, especially using GPU for training. That is why cloud-based resource
Kaggle Notebook is used in this project to speed up computational power (more
detail in 4.1.4 Kaggle)

3.4 Dataset

3.4.1 Data collecting
The data is collected from Udacity’s self - driving car simulator. In this software the
Training mode is chosen and the users have to drive the car manually 10-12 laps by
themselves. While driving the necessary data is recorded, e.g. images, speed,
steering angle and saved in Excel file. For the purpose of a simpler training process,
the images of the central camera are training input and steering values are labeled as
training output.

Fig. 3.5: A view in Udacity software

43

The dataset collected for training comprises 5855 rows (equivalent 5855 training
images) and 5 columns: images of center camera, steering angle, throttle, brake and
speed. To simplify and speed up the training process the throttle, brake and speed
columns are reduced.

Fig. 3.6: Dataset for training.

3.4.2 Data preprocessing
Data preprocessing is an integral step in Machine Learning as the quality of data and
the useful information that can be derived from it directly. That affects the model to
learn and it is important to preprocess data before feeding it into the model.

Balancing steering data
The range of steering value is from -1 to 1, corresponding with -25O to 25O angle
degrees in the simulator . When the car turns all left, steering value is -1 and turns all
right, steering value is 1 and when it goes straight, the steering angle is zero. Most of
the time the car goes straight that is why the distribution of steering angle around zero
is extremely higher than other values. That will affect the learning process.

44

Fig. 3.7: The distribution of steering data

The distribution of value around zero is almost 7000 values and it will be dropped to
equal the horizontal linear 3500

Fig. 3.8: The distribution of steering data after balancing

After dropping unnecessary data the original form of distribution is still the same, with
most of the time steering angle is around zero. In this testing track, the distribution of
data turning left is more than turning right.

45

Smoothing steering data
Because of the limitation in the simulation program the steering values need to be
smoothened. In the simulator program a keyboard is used when the user manually
turns the car right or left, which makes the steering values swing between 0 and 1 or
between 0 and -1. And the step of steering values is 0.1, equal to 2.5o. These factors
do not reflect the behavior of drivers in the real world and make training data
inaccurate. Therefore the steering values need to be smoothened by Gaussian kernel
smoothing method (window size = 70) (described in 2.5 Gaussian kernel smoothing)

Fig. 3.9: Original steering values

Fig. 3.10: Steering values after smoothing

46

Image augmentation
Deep learning networks need a large amount of training data to achieve good
performance. To build a powerful training dataset with a little training data, image
augmentation is considered as a boost to the performance of deep learning models.
Image augmentation creates training images by different ways of processing or
combination of multiple processing: shift, zoom, adjust brightness and flip the images
(more detail in 4.2 Images augmentation and preprocessing).

Images preprocessing
The purpose of this step is to standardize the images and improve their quality in order
to make the training process faster and better. By preprocessing undesired distortions
are suppressed and necessary features of images are enhanced to fit the particular
applications (more detail in 4.2 Images augmentation and preprocessing).

3.5 Model architecture
The neuron network architecture, which is used in this project, is based on NVIDIA’s
research. This model consists of five convolutional layers and four fully-connected
layers. The convolutional layers have two types of filters: 3x3 and 5x5, which extract
features of images. These features are flattened in a 1D array before being fed into a
fully-connected layer. The last neuron of this model is just a perceptron to predict the
steering value.

47

Fig 3.11: Nvidia model architecture [1]

3.6 Hyperparameter tuning using multivariate quadratic
regression

After building the CNN model, hyperparameter tuning is an important step to define
which values have a high effect on loss. A good tuning process can find the importance
of hyperparameters and improve the model performance.

In this project the multivariate quadratic regression is used to determine the
hyperparameters in CNN model. The average of training loss and validation loss of
CNN model is defined as the target variable and features are the hyperparameters. In
this case the variables of the multivariate regression are dropout, learning rate, batch
size. The regression model:

(3.5.1)

48

: th average loss between training loss and validation loss,𝑦
𝑖

𝑖 𝑖 = 0, 𝑛

: th batch size,𝑎
𝑖

𝑖 𝑖 = 0, 𝑛

: th learning rate,𝑏
𝑖

𝑖 𝑖 = 0, 𝑛

: th dropout,𝑐
𝑖

𝑖 𝑖 = 0, 𝑛

: coefficientsβ
: th noise term or random errorϵ

𝑖
𝑖

With the conditions:
● β

5
> 0

● β
6

> 0

● β
7

> 0

● 4. β
5
. β

6
− β

8
2 > 0

● 4. β
5
. β

7
− β

9
2 > 0

● 4. β
6
. β

7
− β

10
2 > 0

After defining the coefficient , the regression model is derived with respect to batchβ
^

size, learning rate and dropout. The system of equations is solved with three variables:
batch size, learning rate and dropout. The derivative of equation (3.5.1) with respect to
variables :𝑎, 𝑏, 𝑐

49

: th batch size,𝑎
𝑖

𝑖 𝑖 = 0, 𝑛

: the derivative of regression model with respect to batch size

: th learning rate,𝑏
𝑖

𝑖 𝑖 = 0, 𝑛

: the derivative of regression model with respect to learning rate

: th dropout,𝑐
𝑖

𝑖 𝑖 = 0, 𝑛

: the derivative of regression model with respect to dropout

50

4.Implementation

4.1 Software

4.1.1 Udacity’s self - driving car simulator
Udacity is an educational platform, they offer many courses in different fields, specially
in artificial intelligence. They developed a self - driving car simulator as an open -
source software to teach their students in course Self - driving car engineering [25].

This software is used for data collecting and testing autonomously driving. There are
two modes: Training mode and Autonomous mode. In training mode the car is driven
manually to record driving behavior and these records are used as training data. In
autonomous mode the deep learning mode connects to the simulator to test how well
the model can perform. At this time the simulator plays a role as a server, from which
the deep learning model receives the streaming images and sends back steering angle
values.

Fig. 4.1: Udacity simulator program

For more informations: https://github.com/udacity/self-driving-car-sim

51

https://github.com/udacity/self-driving-car-sim

4.1.2 Tensorflow and Keras
Tensorflow is an open-source machine learning library and it is also an end-to-end
machine learning platform. It provides different tools for four stages when building a
machine learning model: prepare and preprocess data, build models, deploy models,
implement MLOps [26]. In this project Tensorflow is used only for building models.
Keras is the high-level API for Tensorflow, which is integrated into Tensorflow to speed
up the building deep learning process.

Tensorflow is used for build_network() function. The input parameters of these
functions are the hyperparameters of the deep learning model. The following code
builds a neural network based on the model in 3.4 Model architecture. Dropout layers
(described in 2.2.6 Regularization) are also added between every layer to drop out
unnecessary neurons in order to prevent overfitting.

Code snippet 4.1: function for creating neural network
from keras import Sequential

from keras.layers import Conv2D, Flatten, Dense, Dropout

def build_network(activation, optimizer, dropout):

 model = Sequential()

 model.add(Conv2D(24, (5,5), (1,1), input_shape=(70, 200, 3),

activation=activation)) # (filter, kernel, stride, input shape)

 model.add(Conv2D(36, (5,5), (1,1), activation=activation))

 model.add(Conv2D(48, (5,5), (2,2), activation=activation))

 model.add(Conv2D(64, (3,3), (2,2), activation=activation))

 model.add(Conv2D(64, (3,3), (2,2), activation=activation))

 model.add(Flatten())

 model.add(Dense(100, activation=activation))

 model.add(Dropout(dropout))

 model.add(Dense(50, activation=activation))

 model.add(Dropout(dropout))

 model.add(Dense(10, activation=activation))

 model.add(Dropout(dropout))

 model.add(Dense(1, activation='tanh'))

 model.compile(loss='mse', optimizer=optimizer, metrics=['acc'])

 return model

52

Firstly the model needs to be defined with the function Sequential().The function
Conv2D(24, (5,5), (1,1), input_shape=(70, 100, 1) creates a convolutional
layer with 24 filters, 5x5 kernel, stride 1. The input shape of this layer is the shape of
preprocessed images [x x]. The input shape of the next layer isℎ𝑒𝑖𝑔ℎ𝑡 𝑤𝑖𝑑𝑡ℎ 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠
automatically defined, depending on the previous layer. After the convolutional layer
the dimension of data is three dimensions and it needs to be converted into a one
dimension array before feeding into a fully-connected layer. Flatten() function
flattens the output from the convolutional layer to create a single feature vector. The
last layer is four fully-connected layers with one single neuron at the last layer that
predicts steering angle. The activation function of the last neuron is Tanh because the
steering angle is between -1 and 1

The input parameters:
activation: activation function
optimizer: pass the optimizer from build_optimizer()
dropout: the fraction of units to drop, between 0 - 1.

4.1.3 Version control
Version control is a software tool that helps track and manage changes in source code.
It keeps track of every modification to the code. If something wrong happens, the
developers can turn back and compare the earlier versions in order to fix the bugs or
minimize the disruption. In this project two version control softwares are used: Git and
Weights & Biases.

Git and Github
Git is an open-source code version control system used to track the changes in source
code. It is generally used for management of source code in software development. Git
provides a few of the following features:

● “Branch” is a terminology in Git, which is used to maintain the changes until they
are ready. A new feature of the program can be altered on the “branch” while the
“main branch” stays the same. After the work on “branch” is done, it can be
merged into the “main branch”.

● It allows multiple developers to work together and track “who changed what and
when”.

● Distributed version control system provides each developer with their own local
repository, where they can check a full history of commits.

53

Github is a cloud-based repository, where the developers can store, track, manage,
control the changes in the code. It is a distributed version control platform, where users
can collaborate or share the code together. The source code of this project is stored in
this remote repository: github.com/viettran295/cnn_thesis.

Fig. 4.2: Remote repository on Github

With the button “commits” (red circle) the other users can track what and who changed
the source code. In this project there are two branches: master and test branch, which
are tracked. The new features of this project are coded in the “test” branch. When
everything is fine in that branch, it will be merged into the “master” branch:

Fig. 4.3: The master and test branches in this project

54

https://github.com/viettran295/cnn_thesis

Weights & Biases platform
Weights & Biases platform is a cloud-based tool to automate and track the models. It
provides different useful features: compare various experiments, find and re-run
previous model checkpoint, [27]

Hyperparameters optimization is the main focus in this project. “Sweep” feature
combines different hyperparameters together to determine the model performance and
track experiments. This function can also find out the correlation between
hyperparameters and the metrics users care about. All of the process can be
visualized. The model of this project is stored in the remote repository:
https://wandb.ai/viettran/cnn_thesis/sweeps/zdm5se9n?workspace=user-viettran

Fig. 4.4: Workspace in Weights & Biases

(1): the main workspace, where all of the experiments can be tracked with their metrics
(2): “sweep” function, which combines different hyperparameters
(3): artifacts, where metadata of models are saved and can be re-run the model.
(4): charts, which track the desired metrics, e.g. loss, validation loss, accuracy, … .

55

https://wandb.ai/viettran/cnn_thesis/sweeps/zdm5se9n?workspace=user-viettran

4.1.4 Kaggle
Hardware is also an important factor that needs to be considered in Machine Learning
training. In comparison to a CPU (Central Processing Unit), a GPU (Graphic
Processing Unit) has thousands of cores that can break down the complex problem
into thousands of separate tasks and compute parallelly.

Kaggle is an open cloud-based platform that provides GPUs resources on cloud and
allows the maximum usage of GPU 30 hours per week. Kaggle Notebook allows to run
the code on cloud servers without needing to install anything locally. Moreover Kaggle
also provides access to cloud data storage through Google Cloud Storage, where the
user can store the code and the training datasets. In order to boost the training process
most of the tuning experiments in this project are on Kaggle. The tuning and training
notebooks are stored in kaggle.com/viettrann/code

Fig. 4.5: Kaggle Notebook interface

4.2 Images augmentation and preprocessing
Images augmentation
For image augmentation imgaug library is used in this project, which supports a wide
range of augmentation techniques [28]. To save the computational time, random values
are created with the function np.random.rand() from the numpy library, instead of

56

https://www.kaggle.com/viettrann/code

implementing all of the augmentation techniques. If these random values are only
smaller than 0.5, an augmentation technique is applied. With these lines of code the
position of the image will change from -10% to 10% in x-axis and y-axis. The new
image is shifted to the upper and left side.

Code snippet 4.2: code for shifting images
from imgaug import augmenters as iaa

if np.random.rand() < 0.5:

 aff = iaa.Affine(translate_percent={'x':(-0.1, 0.1),

'y':(-0.1, 0.1)})

 img = aff.augment_image(img)

Fig. 4.6: The original image (left) and left and upper shifted image (right)

The next few lines of code zoom in process is applied with scale range from 1.2 to 1.4

Code snippet 4.3: code for zooming images
 if np.random.rand() < 0.5:

 zoom = iaa.Affine(scale=(1.2, 1.4))

 img = zoom.augment_image(img)

Fig. 4.7: The original image (left) and zoomed image (right)

57

The brightness of the image is also adjusted to make the training data more diverse
with these lines of code. When the brightness value is greater than 1, the original
image is brighter and it is opposite when the brightness value is lower than 1.

Code snippet 4.4: code for adjusting the brightness of images
if np.random.rand() < 0.5:

 brightness = iaa.Multiply((0.5, 1.5))

 img = brightness.augment_image(img)

Fig. 4.8: The original image (left) brightness value is greater than 1 (right)

The training images are flipped around the y-axis with these lines of code. When
flipping process is applied, steering angle must be reversed to adapt a new image

Code snippet 4.5: code for flipping images
 if np.random.rand() < 0.5:

 img = cv2.flip(img, 1)

 steering = -steering

Fig. 4.9: The original image (left) and flipped image (right)

58

Images preprocessing
Drop image: to reduce the image size and increase computational speed the images
need to be cut unnecessary areas, which is above and below the road of the image.
With these lines of code it will concentrate on the field, which contains the road.

Code snippet 4.6: code for dropping the size images
 img = img[60:130,:,:]

With the first and second position of this array are the rows (height) and columns
(width) of the image. The remaining part of the image is from the 60th to 130th row and
all of the columns.

Fig. 4.10: The original image (left) and dropped image (right)

Change color space: in order to increase the computational speed, the dimensions of
the images are reduced from 3 channels to 1 channel of the images, which means the
color space RGB has to be changed into grayscale [9]. This color space is described in
2.1.1 Color space.

Code snippet 4.7: code for changing the color space of images
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

Fig. 4.11: The original image (left) and grayscale image (right)

59

Blur images: the low-pass Gaussian filter is applied to remove noise and blur the
image. With this line of code a Gaussian kernel 5x5 and no stride is applied to the
image.

Code snippet 4.8: code for blurring images with kernel 3x3
img = cv2.GaussianBlur(img, (3,3))

Fig. 4.12: The original image (left) and blurred image (right)

4.3 The program
Before running all of the hyperparameters need to be defined in “sweep” configuration
(more detail in 4.1.3.2 Weights & Biases platform). This configuration is stored in the
python file wandb_config.py. The values of the hyperparameter are limited min and
max values. The result of these elements is saved for the regression model.

Code snippet 4.9: configuration for hyperparameter to run the experiments
sweep_config = {

 'method': 'random',

 'name': 'sweep',

 'metric': {

 'name': 'val_loss',

 'goal': 'minimize'

 },

 'parameters':{

 'epochs': {

 'values': [35]

 },

 'batch_size': {

'distribution': 'int_uniform',

60

'min': 10,

 'max': 200

 },

 'dropout': {

 'distribution': 'int_uniform',

'min': 0,

 'max': 0.6

 },

 'learning_rate': {

 'distribution': 'int_uniform',

'min': 0.01,

 'max': 0.0001

 },

 'optimizer':{

 'values': ['Adam']

 },

 'activation': {

 'values': ['tanh']

 }

 }

}

The configuration parameters:
method: combine the hyperparameters randomly
metrics: the target of this tuning is to minimize the validation loss.
epochs: is an iteration over the whole dataset. To be more accurate in tuning, all of the

models have the same epochs (epochs = 35).
batch_size: number of training samples per weights update.
dropout: the rate of dropped perceptrons in Dropout layers: from 0 to 0.6
learning_rate: learning rate of optimizers: from 0.0001 to 0.01
optimizer: optimizer algorithm is Adam
activation: activation functions is ‘tanh’

Component Experiments creating
This component contains all of the necessary functions. As mentioned in 4.1.2 Data
preprocessing the steering values around zero need to be cut down in order to balance
with the values of steering angles. The function balance_data() reduces the steering
values zero in the data frame.

61

Code snippet 4.10: function to balance the dataset
def balance_data(dataframe, cols_name: str, sample_remain=3500,

display=True, nbins=31):

 hist, bin = np.histogram(dataframe[cols_name], bins=nbins)

 center = (bin[:-1] + bin[1:]) * 0.5

 # remove center angle to balance dataset

 remove_list = []

 for i in range(nbins):

 bin_list = []

 for j in range(len(dataframe[cols_name])):

 if dataframe[cols_name][j] >= bin[i] and

dataframe[cols_name][j] <= bin[i+1]:

 bin_list.append(j)

 bin_list = shuffle(bin_list)

 bin_list = bin_list[sample_remain:]

 remove_list.extend(bin_list)

 dataframe.drop(dataframe.index[remove_list], inplace=True)

 return dataframe

The input parameters:
dataframe: Pandas DataFrame
cols_name: column name of the data frame
sample_remain: numbers of data will be kept
display: if this parameter is true, histogram of the dataset will be displayed
nbins: number of bins in the histogram

As described in 2.2.3 Vectorization the images and the steering values are vectorized
in a numpy array in order to speed up the computation. Load_data_to_array() function
will pack the data from data frame into numpy array

Code snippet 4.11: function to vectorize the dataset
load img path and steering from dataframe to np array

def load_data_to_array(path, dataframe):

 imgPath = []

 steering = []

 for i in range(len(dataframe)):

 tmp = dataframe.iloc[i]

62

 imgPath.append(os.path.join(path, 'IMG', tmp[0])) # first col

of Dataframe

 steering.append(tmp[3]) # third col of Dataframe

 return np.asarray(imgPath), np.asarray(steering)

The input parameters:
path: path, where the images are saved
dataframe: Pandas DataFrame
Before feeding into a deep learning model the images need to be preprocessed.
Img_preprocess_pipeline() is a combination of image augmentation and image
preprocessing (more detail in 4.1.2 Data preprocessing). This function pairs the images
as training data with the steering values as labels.

Code snippet 4.12: function to preprocess the images
def img_preprocess_pipeline(img_path_arr, steering_arr,

train_flag=True):

 img_batch = []

 steering_batch = []

 for i in range(len(img_path_arr)):

 idx = random.randint(0, len(img_path_arr)-1)

 if train_flag:

 img, steering = augment_img(img_path_arr[idx],

steering_arr[idx])

 else:

 img = mpimg.imread(img_path_arr[idx])

 steering = steering_arr[idx]

 img = img_preprocessing(img)

 img_batch.append(img)

 steering_batch.append(steering)

 return (np.asarray(img_batch), np.asarray(steering_batch))

The input parameters:
img_path_arr: path to the images, which is vectorized
steering_arr: vectorized steering values
train_flag: if the images are for training, they will be augmented and preprocessed. If
the images are for testing, augmentation and preprocessing are not necessary

63

The experiments creating process is written in the Jupyter Notebook. The notebook
consists of a sequence of cells and the code in every cell can be executed
independently.

Code snippet 4.13: code for calling the function to read and preprocess the data
from helper import *

path = 'data'

df = load_data(f'{path}/driving_log.csv')

df = balance_data(df, 'Steering', sample_remain=3000)

Next step DataFrame is loaded into a vector with a support of load_data_to _array()
function. After that the vector is splitted into training and validation data with the
function train_test_split(): 80% of the data are used for training and 20% are used for
validation. Before feeding into the model the training images need to be preprocessed
through the pipeline img_preprocess_pipeline(). This function pairs the images as
training data with the steering values as labels.

Code snippet 4.14: code for calling the function to vectorize and preprocess images
from sklearn.model_selection import train_test_split

img_path, steering = load_data_to_array(path, df)

fixed value for random_state to keep train and test datasets same

each time

X_train, X_val, Y_train, Y_val = train_test_split(img_path, steering,

test_size=0.2, random_state=1)

X_train, Y_train = img_preprocess_pipeline(X_train, Y_train, 1)

X_val, Y_val = img_preprocess_pipeline(X_val, Y_val, 0)

In the next cell Weights & Biases library is imported and initialized. The results and
hyperparameter of each experiment is stored and tracked in a project named
‘cnn_thesis’. In order to optimize and accelerate the tuning process sweep feature is
also initialized with the function wandb.sweep(). This function is described in more
detail in 4.1.3.2 Weights & Biases.

Code snippet 4.15: code for running the experiments on Weights & Biases platform
import wandb

from wandb.keras import WandbCallback

from wandb_config import sweep_config

64

wandb.init(project='cnn_thesis')

sweep_id = wandb.sweep(sweep_config, project='cnn_thesis')

Component Multivariate regression
This component uses data from experiments in CNN model to build a multivariate
quadratic regression model. Before feeding data into quadratic regression, the original
features (dropout, learning rate, batch size) need to be transformed into a new matrix
consisting of the combinations of the features with the degree less than or equal to two.

The new features array has a form: . After that[1, 𝑎, 𝑏, 𝑐, 𝑎2, 𝑎𝑏, 𝑎𝑐, 𝑏2, 𝑏𝑐, 𝑐2]
LinearRegression() is used as a base to find the coefficients of the model.

Code snippet 4.16: code for determining the regression model
degree = 2

poly_reg = PolynomialFeatures(degree=degree)

poly_x_train = poly_reg.fit_transform(x_train)

regr = LinearRegression()

regr.fit(poly_x_train, y_train)

After defining the regression model, it is derived with respect to variables: dropout,
learning rate and batch size. The system of equations is stored in an array

and is solved by the numpy function𝑐𝑜𝑒𝑓 = [1, 𝑎, 𝑏, 𝑐, 𝑎2, 𝑎𝑏, 𝑎𝑐, 𝑏2, 𝑏𝑐, 𝑐2]
np.linalg.solve() to find the values of hyperparameters.

Code snippet 4.17: code for solving the system of equations
coef_matrix = np.array([[2*coef[4], coef[5], coef[6]],

[coef[5], 2*coef[7], coef[8]],

[coef[6], coef[8], 2*coef[9]]])

depen_var = np.array([-coef[1], -coef[2], -coef[3]])

res = np.linalg.solve(coef_matrix, depen_var)

A callback function ModelCheckpoint from Tensorflow is added in this component.
ModelCheckpoint saves a state of a model or weights and they can be loaded later to
continue training from the saved state. The state is saved in the .hdf5 file.

65

Code snippet 4.18: code for training and saving the model
from keras.callbacks import ModelCheckpoint

model = build_network('tanh', 'Adam')

checkpoint_path = f'model/{opt}-{lr}.hdf5'

checkpoint_callback = ModelCheckpoint(

 filepath=checkpoint_path,

 monitor='val_loss',

 verbose=1,

 save_best_only=True

)

hist = model.fit(X_train, Y_train, validation_data=(X_val, Y_val),

batch_size=93, epochs=35, shuffle=True,

callbacks=[checkpoint_callback])

66

5. Results
Hyperparameters optimization
In order to build the multivariate quadratic regression model the data need to be
collected by combining the range of following hyperparameters in CNN model. To be
more accurate all of the tests are run with the same epochs (epochs = 30):

Batch size 10 - 200

Dropout 0 - 0.6

Learning rate 10-4 - 10-2

Tab. 5.1: The values of hyperparameters for data collecting

After running 228 experiments, a table of hyperparameters with 6 columns x 228 rows
is collected to feed into a multivariate quadratic regression model. The column “mean”
is the average of training loss and validation loss

Batch size Learning rate Dropout Loss Validation loss Mean

0 182 0.005448 0.694351 0.078256 0.041367 0.059811

1 119 0.003378 0.493624 0.059851 0.039452 0.049652

2 115 0.004924 0.684175 0.062070 0.040731 0.051400

3 181 0.003706 0.536575 0.068155 0.040875 0.054515

4 143 0.004607 0.573039 0.062509 0.041824 0.052166

...

226 58 0.007874 0.317321 0.081749 0.059558 0.070653

227 35 0.001483 0.302686 0.060643 0.059847 0.060245

228 28 0.002530 0.139669 0.053006 0.059653 0.056329

Tab. 5.2: Dataset of hyperparameters.

67

Fig. 5.1: Average loss and hyperparameters

The graph in figure 5.1 has four dimensions with: x - dropout, y - learning rate, z -
mean loss, color - batch size. The red point has the lowest mean loss , which is0. 0475
found by feeding table 5.2 into the regression model (in Chapter 3.5 Hyperparameter
tuning using multivariate quadratic regression).

The multivariate quadratic regression model:

(5.1)

The regression model (5.1) is defined with the lowest mean squared error 1.4.10-4. The
derivative of regression model (5.1):

(5.2)

68

The results of system of equations (5.2):

Batch size number has to be a natural number. That is why the batch size is rounded to
93 and the learning rate and dropout stay the same. These hyperparameters are
passed into the CNN model.

Fig. 5.2: Loss and validation loss

In this training EarlyStopping() in Tensorflow is applied, which makes the training stop if
after 3 epochs the loss is no longer decreasing. The above graph shows training loss
and validation loss of the model in 30 epochs. Both losses come closer together after
15 epochs. After every epoch the training dataset is shuffled that makes the loss lines
unsmooth. After 15 epochs the validation loss is steady around 0.073 and training loss
is approximately 0.053. The difference between loss and validation loss is not
significant. The training loss 0.053 is slightly higher than 1O in steering angle (max
steering angle is 25O, max steering value is 1)

69

Performance evaluation
This section evaluates the performance of the model after tuning and training. Because
of the problems described in 3.3.2 Data preprocessing - smoothing steering values, the
actual steering values need to be smoothened by Gaussian kernel smoothing method
with the window size is 70 [29]. The blue line is the actual steering value and the red
line is the prediction value.

Fig. 5.3: Steering values and prediction before smoothing

The following graph shows the difference of steering values between the true values
after smoothing and the prediction of the model. The mean square error between them
is 0.049

Fig. 5.4: Steering values and prediction after smoothing

70

Summary

In this thesis the multivariate quadratic regression is applied for the tuning process of
convolutional neural networks. This method determined the values of hyperparameters,
which makes the validation loss lowest. Building a regression model for the tuning
process can avoid randomly choosing hyperparameters that saves much
computational resources and time. This method can define the exact values and it can
reduce the range to choose for every hyperparameter. It is necessary to continue the
tuning process after solving the system of equations.

There are two maps in the simulator for training and testing. The training dataset is
collected from the first map and then the trained model is tested in the second map.
After training the CNN model can work well in the first map, from which the images are
collected for the training dataset. But the model has a problem when it works in a
completely new second map, which is never seen before. The model can not detect the
road to predict the steering angle. This model still has limits to generalize to new and
unseen dataset.

For further research it is recommended that the tuning process is optimized with other
regression methods (e.g, polynomial regression with higher degree or regression tree)
to compare the difference with the multivariate quadratic regression.

71

References

[1] M. Bojarski, D. Del Testa, and D. Dworakowski, “End to End Learning for Self-Driving
Cars,” in Ieee, Apr. 2016. [Online]. Available:
https://images.nvidia.com/content/tegra/automotive/images/2016/solutions/pdf/end-to-end-dl-us
ing-px.pdf

[2] Net-Scale Technologies, INC, “Autonomous Off-Road Vehicle Control Using

End-to-End Learning,” in Final technical report, Apr. 2014. [Online]. Available:

http://net-scale.com/doc/net-scale-dave-report.pdf

[3] A. C. Serban, E. Poll, and J. Visser, “A Standard Driven Software Architecture for

Fully Autonomous Vehicles,” in 2018 IEEE International Conference on Software

Architecture Companion (ICSA-C), Apr. 2018. Accessed: Dec. 25, 2022. [Online].

Available: http://dx.doi.org/10.1109/icsa-c.2018.00040

[4] Q. Liu and Y. Wu, “Supervised Learning,” in Encyclopedia of the Sciences of

Learning, Boston, MA: Springer US, 2012, pp. 3243–3245. Accessed: Dec. 25, 2022.

[Online]. Available: http://dx.doi.org/10.1007/978-1-4419-1428-6_451

[5] IBM Cloud Education, “Neuronale Netzwerke", IBM, Aug. 17, 2020.

https://www.ibm.com/de-de/cloud/learn/neural-networks

[6] P. Baheti, “V7,” Oct. 21, 2022.

https://www.v7labs.com/blog/neural-networks-activation-functions (accessed Dec. 25,

2022).

[7] M. Krishnakumar, “The 6 Autonomous Driving Levels Explained,”W&B, Sep. 03,

2022. (accessed Dec. 25, 2022).

[8] A. MacKenzie, “Mercedes-Benz Drive Pilot Level 3 Autonomous First ‘Drive’: We

Try a World’s First Driverless System,” MotorTrend, May 06, 2022.

72

https://www.motortrend.com/news/mercedes-benz-drive-pilot-eqs-autonomous-driverle

ss-first-drive-review/ (accessed Dec. 25, 2022).

[9] “Blurring Images – Image Processing with Python,” Data Carpentry - Image

Processing with Python. https://datacarpentry.org/image-processing/06-blurring/

(accessed Jan. 06, 2023).

[10] “tf.keras.layers.Conv2D ,” TensorFlow.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D (accessed Jan. 25,

2023).

[11] “Spatial Filters,” Gaussian Smoothing.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm (accessed Jan. 06, 2023).

[12] A. Zhang, Z. Lipton, M. Li, and A. J. Smola, Dive Into Deep Learning: Interactive

Deep Learning Book with Code, Math and Discussions ; Implemented with PyTorch,

NumPy/MXNet, and TensorFlow. 2022.

[13] A. Botchkarev, “Performance Metrics (Error Measures) in Machine Learning

Regression, Forecasting and Prognostics: Properties and Typology,” Interdisciplinary

Journal of Information, Sep. 2018.

[14] “Reducing Loss: Gradient Descent ,” Google Developers.

https://developers.google.com/machine-learning/crash-course/reducing-loss/gradient-d

escent (accessed Jan. 06, 2023).

[15] N. Seth, “Is Gradient Descent Sufficient for Neural Network Models,” Analytics

Vidhya, Apr. 01, 2021.

https://www.analyticsvidhya.com/blog/2021/04/is-gradient-descent-sufficient-for-neural-

network/ (accessed Jan. 06, 2023).

73

[16] “Reducing Loss: Stochastic Gradient Descent ,” Google Developers.

https://developers.google.com/machine-learning/crash-course/reducing-loss/stochastic

-gradient-descent (accessed Jan. 06, 2023).

[17] G. Hinton, http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf (accessed

Jan. 06, 2023).

[18] D. P. K. Ba Jimmy Lei, “Adam: A Method for Stochastic Optimization.”

https://arxiv.org/pdf/1412.6980.pdf (accessed Jan. 06, 2023).

[19] K. Pykes, “Fighting Overfitting With L1 or L2 Regularization: Which One Is

Better?,” neptune.ai, Jul. 22, 2022.

https://neptune.ai/blog/fighting-overfitting-with-l1-or-l2-regularization (accessed Jan. 06,

2023).

[20] N. Srivastava, G. Hinton, and A. Krizhevsky, “Dropout: A Simple Way to Prevent

Neural Networks from Overfitting,” Journal of Machine Learning Research, 2014.

[21] “CS231n Convolutional Neural Networks for Visual Recognition.”

https://cs231n.github.io/convolutional-networks/ (accessed Jan. 06, 2023).

[22] A. Fisher, C. Rudin, and F. Dominici , “All Models are Wrong, but Many are Useful:

Learning a Variable’s Importance by Studying an Entire Class of Prediction Models

Simultaneously,” Dec. 2019

[23] “Multivariate Regression,” Brilliant. https://brilliant.org/wiki/multivariate-regression/

(accessed Jan. 25, 2023).

[24] “Backpropagation,” Brilliant. https://brilliant.org/wiki/backpropagation/ (accessed

Jan. 25, 2023).

74

[25] Udacity, “GitHub - udacity/self-driving-car-sim: A self-driving car simulator built with

Unity,” GitHub. https://github.com/udacity/self-driving-car-sim (accessed Jan. 25, 2023).

[26] “TensorFlow,” TensorFlow. https://www.tensorflow.org/ (accessed Jan. 25, 2023).

[27] “Wandb,” Documentation. https://docs.wandb.ai/quickstart (accessed Jan. 25,

2023).

[28] “imgaug — imgaug 0.4.0 documentation.” https://imgaug.readthedocs.io/en/latest/

(accessed Jan. 25, 2023).

[29] J. Dancker, “A brief introduction to time series smoothing - Jonte Dancker,”

Medium, Sep. 27, 2022.

https://medium.com/@jodancker/a-brief-introduction-to-time-series-smoothing-4f7ed61f

78e1 (accessed Feb. 08, 2023).

[30] J. Dancker, “A brief introduction to time series smoothing - Jonte Dancker,”

Medium, Sep. 27, 2022.

https://medium.com/@jodancker/a-brief-introduction-to-time-series-smoothing-4f7ed61f

78e1 (accessed Feb. 28, 2023).

[31] S. Saha, “A Comprehensive Guide to Convolutional Neural Networks — the ELI5

way,” Towards Data Science, Nov. 16, 2022.

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networ

ks-the-eli5-way-3bd2b1164a53 (accessed Feb. 28, 2023).

75

